
Proceedings of the 3rd Workshop on the Use of Computational Methods in the Study of Endangered Languages: Vol. 1 Papers, pages 23–27,
Honolulu, Hawai‘i, USA, February 26–27, 2019.

23

OCR evaluation tools for the 21st century

Eddie Antonio Santos

Canadian Indigenous languages technology project, National Research Council Canada
Alberta Language Technology Lab, University of Alberta, Edmonton, Canada

Eddie.Santos@nrc-cnrc.gc.ca

Abstract

We introduce ocreval, a port of the ISRI
OCR Evaluation Tools, now with Unicode
support. We describe how we upgraded the
ISRI OCR Evaluation Tools to support mod-
ern text processing tasks. ocreval supports
producing character-level and word-level ac-
curacy reports, supporting all characters rep-
resentable in the UTF-8 character encoding
scheme. In addition, we have implemented the
Unicode default word boundary specification
in order to support word-level accuracy reports
for a broad range of writing systems. We ar-
gue that character-level and word-level accu-
racy reports produce confusion matrices that
are useful for tasks beyond OCR evaluation—
including tasks supporting the study and com-
putational modeling of endangered languages.

1 Introduction

Optical Character Recognition (OCR) is the pro-
cess of detecting text in a image, such as a scan of
a page, and converting the written language into
a computer-friendly text format. While OCR is
well-established for majority languages (Tesseract
Langdata), the same cannot be said for endangered
languages (Hubert et al., 2016). When developers
create OCR models for low-resources languages,
they must have a tool for evaluating the accuracy
of their models. This will aid in making decisions
on how to model the language, and how to tweak
parameters in order to accurately recognize text in
that language, especially when labelled materials
are scarce.
A further complication encountered when de-

veloping OCR models for endangered languages
is that of orthography—a languagemay havemany
orthographies, or may not have a standardized or-
thography at all. And if any orthographies ex-
ist, they likely contain characters beyond the non-
accented Latin alphabet. IPA-influenced glottal

stop (ʔ) and schwa (ə) characters have a tendency
to sneak into new orthographies. Historically,
computer software provides poor support for char-
acters outside the range of those characters com-
monly found in Western European majority lan-
guage orthographies.
The ISRI OCR Evaluation Tools were last re-

leased in 1996 by the University of Nevada,
Las Vegas’s Information Science Research Insti-
tute (Rice and Nartker, 1996). Despite their age,
the tools continue to be useful to this day for
the task of evaluating new OCR models (Hubert
et al., 2016). Its accuracy and wordacc tools
are of particular utility. However, being some-
what dated, it has limited and awkward support
for non-European orthographies. Since the tools’
1996 release, the Unicode standard has gradually
improved support for non-European characters, in-
troducing many new scripts and characters. How-
ever, the ISRI OCR Evaluation Tools have not
been upgraded since.
In this paper, we present an updated version of

the ISRI OCR Evaluation Tools, which we named
ocreval. Our contributions include

• Port the ISRI OCR Evaluation Tools onto
modern macOS and Ubuntu Linux systems;

• Add support for UTF-8, enabling the analysis
of 1,112,064 unique characters;

• Implement the default Unicode word bound-
ary specification to evaluate word accuracy.

We describe in more depth what we have
changed and why; and we postulate how ocreval
can be used to support tasks unrelated to OCR
that may benefit people working in endangered
language study and tool development.
Before continuing, we would be remiss not to

mention OCRevalUAtion (Carrasco, 2014), an al-
ternative to the toolkit presented in this paper.



24

2 How does ocreval extend the ISRI
OCR Evaluation Tools?

ocreval is a port of the ISRI OCR Evaluation
Tools to modern systems. This means that much
of the codebase and functionality is the same as
the codebase written in 1996; however, the origi-
nal code presents many incompatibilities with cur-
rent systems (usage of older programming lan-
guage features and reliance on out-of-date source
code libraries). When we downloaded the ISRI
OCR Evaluation Tools for the first time, its C pro-
gramming language source code would not com-
pile (translate source code into a usable applica-
tion). After a fewmodifications to the source code,
we were able to compile and run the ISRI OCR
Evaluation Tools on our systems.
The second problem is how text was represented

in the system. The ISRI OCR Evaluation Tools
were written in the early days of Unicode, when
Unicode was strictly a 16-bit character set. As
such, the ISRI OCR Evaluation Tools can handle
the first 65,536 characters defined in the Unicode
standard; however, as of Unicode 11.0 (Unicode
Consortium, 2018), there are 1,112,064 possible
characters total.1 Only 137,374 (12.33%) char-
acters are defined in the Unicode standard, with
the rest of the code space reserved for future use.
This means that the ISRI OCR Evaluation Tools
can only represent half of the characters defined
in the modern day Unicode standard. Among the
characters that are not representable in the ISRI
OCR Evaluation Tools are characters in recently
created writing systems, such as the Osage alpha-
bet (Everson et al., 2014), as well as historical
writing systems (Cuneiform, Linear B, Old Italic).
Thus, ocreval extends the ISRI OCR Evaluation
Tools by internally representing characters using
the UTF-32 character encoding form, allowing for
the analysis of characters from writing systems
both new and old.

2.1 UTF-8 support

The most significant hurdle remaining is how Uni-
code characters are input and output into ocreval.
As of October 2018, UTF-8 is the most common
character encoding scheme on the web, used for
92.4% of websites (W3Techs). This is not surpris-

1 There are 1,114,112 values defined in the Unicode 11.0
code space, however 2048 of these are surrogate characters
which cannot encode a character by themselves; hence, we
removed these characters from the total.

ing, as UTF-8 represents all 1,112,064 characters
possible in the Unicode standard in a way that is
backwards-compatible with 7-bit ASCII. The ISRI
OCR Evaluation Tools predate the widespread
adoption of UTF-8; as such, it assumes that any
text input is encoded in ISO-8859-1 or “Latin-1”
encoding. Latin-1, intended for use with West-
ern European languages, only encodes about 192
printable characters, most of which are Latin al-
phabetic characters; as such, Latin-1 is usually in-
adequate for encoding endangered and minority
languages. The ISRI OCR Evaluation Tools does
support 16-bit Unicode (65,536 characters), how-
ever, it uses an ad hoc format called “Extended
ASCII”. The ISRI OCR Evaluation Tools bundled
the uni2asc and asc2uni tools to convert to and
from the Extended ASCII format and the (now
outdated) 16-bit UCS-2 character encoding. Any-
body wishing to use characters outside the range of
Latin-1 would have to first use uni2asc before us-
ing their documents with any of the available tools.
If their original documents were encoded in UTF-
8, they would have to do two conversions: first,
convert from UTF-8 to UCS-2 using a tool such as
iconv; then, convert the UCS-2 file into Extended
ASCII using uni2asc.
In a timewhenUTF-8 exists and is readily avail-

able, we find that Extended ASCII is too much of
a hassle. As such, we modified the file reading
and writing routines used in all utilities provided
in ocreval to open files in the UTF-8 character
encoding scheme exclusively, obviating the need
to convert into an ad hoc format such as Extended
ASCII. Since all input and output is done in UTF-
8, we removed the now-redundant asc2uni and
uni2asc utility programs from ocreval.

2.2 Unicode word segmentation
One of the ISRI OCR Evaluation Tools’s most
useful utilities is wordacc. As its name im-
plies, wordacc computes the recognition accuracy
for entire words, rather than for single characters
alone. However, what constituted as a “word” was
rather narrowly defined in the previous version.
Originally, a “word” was a series of one or more
consecutive characters in the range of lowercase
ASCII characters (U+0061–U007A), or lowercase
Latin-1 characters (U+00DF–U+00F6, U+00F8–
U+00FF). Input would have to be converted to
lowercase before calculating word accuracy. Any
other characters were not considered to be part of a
word, and hence, would not appear in word accu-



25

racy summaries or confusion matrices. This nar-
row definition of a “word” limits the usefulness of
wordacc, even for Latin-derived scripts.
To broaden its usefulness, we changed how

ocreval finds words in text by adopting Uni-
code’s default word boundary specification (Uni-
code Standard Annex #29). This specifies a rea-
sonable default for finding the boundaries between
words and other words, and between words and
non-word characters. Then, to find words proper,
we extract character sequences between bound-
aries that start with a “word-like” character, such
as letters, syllables, digits, and symbols that fre-
quently appear as parts of words. We also con-
sidered private-use characters to be “word-like”
characters so that if a language’s orthography is
not yet encoded or is poorly-supported in Unicode,
its characters can be represented using private-use
characters—which are set aside by the Unicode
standard as allocated code points to represent any
character the user requires.
A caveat is that this algorithm will not work for

all writing systems. Scripts like Thai, Lao, and
Khmer, which do not typically have any spaces
separating words, will not be handled properly. As
such, this is not a “one-size-fits-all” solution, and
may need to be tailored depending on the language.

2.3 Installing ocreval

In all cases, the user must have a basic understand-
ing of the command line interface of their com-
puter. However, we have tried to document and
streamline the process when possible.

ocreval can be installed on a modern macOS
system using the Homebrew package manager:

$ brew tap eddieantonio/eddieantonio
$ brew install ocreval

On Ubuntu Linux, the tools can be installed
from its source code. After downloading the
zip archive,2 install all system dependencies and
extract the contents of the source code archive.
Within the newly created directory, issue the make
command from the command line:

$ sudo apt update
$ sudo apt install build -essential \

libutf8proc -dev unzip
$ unzip ocreval -master.zip
$ cd ocreval -master/
$ make
$ sudo make install

2 https://github.com/eddieantonio/ocreval/
archive/master.zip

ocreval can also be installed on Windows 10
within the Ubuntu app, obtainable in the Microsoft
app store. Copy the downloaded zip archive into
the Ubuntu subsystem, then follow the same steps
as the Ubuntu Linux install.

2.4 The importance of open source

Software is open source when its source code is
publicly-accessible, under a license that permits
anyone to make modifications and share the mod-
ifications with others. We have released ocreval
as open source for many reasons: it maximizes the
amount of people that can benefit from the tool
by making it freely-accessible; hosting the soft-
ware on the collaborative coding platform GitHub
allows for people around the world to share en-
hancements to ocreval for everybody’s benefit;
and the ISRI OCR Evaluation Tools were origi-
nally released as open source.

ocreval is maintained on GitHub at https:
//github.com/eddieantonio/ocreval. On
GitHub, changes to the source code are transparent
and publicly-visible. Contributions are welcome
in the form of issue reports and pull requests.
Issue reports alert us to any bugs or inadequacies
found in the currently published version of the soft-
ware; pull requests allow volunteers to write sug-
gested source code enhancements to share with the
rest of the community. Creating an issue report or
a pull request both require a GitHub account. We
welcome anyone who wants to contribute to join
in; no contribution is too small!
The ISRI OCR Evaluation Tools were released

under an open source licence. The significance
of this cannot be overstated. If the original
source code was not available on (the now defunct)
Google Code repository, this paper would not have
been possible. As such, our contributions are also
released under an open source license, in the hopes
that it may also be useful in 20 years time.

3 How can ocreval help endangered
languages?

Hubert et al. (2016) have already used ocreval to
evaluate the accuracy of OCRmodels for Northern
Haida, a critically-endangered language spoken in
Western Canada. Unicode support was integral to
representing and evaluating the idiosyncratic or-
thography specific to the corpus in question (which
differs from modern-day Haida orthographies).
Previously, we mentioned that among the ISRI

https://github.com/eddieantonio/ocreval/archive/master.zip
https://github.com/eddieantonio/ocreval/archive/master.zip
https://github.com/eddieantonio/ocreval
https://github.com/eddieantonio/ocreval


26

OCR Evaluation Tools’ most useful utilities are
accuracy and wordacc. We see these utilities in
ocreval to be much more general-purpose tools,
not only limited to the evaluation of OCR output.
Fundamentally, these tools compare two text files,
producing a report of which character sequences
are misclassified or “confused” for other charac-
ter sequences. This concept is useful beyond the
evaluation of OCR models.

One possible non-OCR application could be to
study language change. Parallel texts—whether
it be prose, or a word list—could be fed into
accuracy. One part of the input pair would be
representative of language spoken or written in the
modern day, and the other part of the input would
be a historical example, reconstructed text, or text
from a distinct dialect. accuracy will then pro-
duce minimal “confusions”, or sequences of com-
monly misclassified sequences. Since accuracy
prints statistics for how often a confusion is found,
accuracy inadvertently becomes a tool for re-
porting systematic changes, along with how often
the effect is attested. Preliminary work by Arppe
et al. (2018) used ocreval to compare Proto-
Algonquian to contemporary Plains Cree. Us-
ing an extensive database with over ten thousand
pairings of morphologically simple and complex
word stems—mapping each modern Cree word
form with the corresponding reconstructed Proto-
Algonquian form—they found that the contents of
the confusion matrix matched quite closely with
the posited historical sound change rules. In addi-
tion, the confusion matrix can be used to quantify
how often a particular rule applies in the overall
Cree vocabulary. The benefit of ocreval’s added
Unicode support facilitates this use case, as sound
change rules are hardly ever representable in only
Latin-1 characters.

Lastly, throughout this paper we have made the
assumption that corpora are encoded in UTF-8—
thus, using ocreval should be straightforward.
However, this is not always the case for minor-
ity language resources, even if they are encoded
digitally. One way minority language texts may
have been encoded is by “font-encoding” or “font-
hacking”. This is a specially-designed font over-
rides the display of existing code points, as op-
posed to using existing Unicode code points as-
signed for that particular orthography. This may be
because the font was defined for pre-Unicode sys-
tems, or because Unicode lacked appropriate char-

acter assignments at the development of said font.
For example, in place of the ordinary character for
“©”, the font will render “ǧ”, and in place of “¬”,
the font will render “ĺ”. For these cases, ocreval
alone is insufficient; an external tool must be used
such as convertextract (Pine and Turin, 2018).

4 Conclusion

We presented ocreval, an updated version of
the ISRI OCR Evaluation Tools. ocreval pro-
vides a suite of tools for evaluating the accuracy
of optical character recognition (OCR) models—
however, we postulate that the evaluation tools can
be generalized to support other tasks. Our contri-
butions include porting the old codebase such that
it works on modern systems; adding support for
the ubiquitous UTF-8 character encoding scheme,
as well internally representing characters using the
full Unicode code space; and the implementation
of the default Unicode word boundary specifica-
tion, which facilitates finding words in a variety
of non-Latin texts. We released ocreval online
as open-source software, with the intent to make
our work freely-accessible, as well as to encourage
contributions from the language technology com-
munity at large.

Acknowledgments

The author wishes to thank Isabell Hubert for in-
volving us in this project; the author is grateful to
Antti Arppe, Anna Kazantseva, and Jessica Santos
for reviewing early drafts of this paper.

References
Antti Arppe, Katherine Schmirler, Eddie Antonio

Santos, and Arok Wolvengrey. 2018. Towards a
systematic and quantitative identification of histor-
ical sound change rules — Algonquian historical
linguistics meets optical character recognition
evaluation. Working paper presented in Alberta
Language Technology Lab seminar, November
19, 2018. http://altlab.artsrn.ualberta.
ca/wp-content/uploads/2019/01/OCR_and_
proto-Algonquian_nonanon.pdf.

Rafael C Carrasco. 2014. An open-source OCR eval-
uation tool. In Proceedings of the First Interna-
tional Conference on Digital Access to Textual Cul-
tural Heritage, pages 179–184. ACM. https://
github.com/impactcentre/ocrevalUAtion.

Michael Everson, Herman Mongrain Lookout, and
Cameron Pratt. 2014. Final proposal to encode the

http://altlab.artsrn.ualberta.ca/wp-content/uploads/2019/01/OCR_and_proto-Algonquian_nonanon.pdf
http://altlab.artsrn.ualberta.ca/wp-content/uploads/2019/01/OCR_and_proto-Algonquian_nonanon.pdf
http://altlab.artsrn.ualberta.ca/wp-content/uploads/2019/01/OCR_and_proto-Algonquian_nonanon.pdf
https://github.com/impactcentre/ocrevalUAtion
https://github.com/impactcentre/ocrevalUAtion


27

Osage script in the UCS. Technical report, ISO/IEC
JTC1/SC2/WG2. Document N4619.

Homebrew. 2009. Homebrew: The missing package
manager for macOS. https://brew.sh/. (Ac-
cessed on 10/22/2018).

Isabell Hubert, Antti Arppe, Jordan Lachler, and Ed-
die Antonio Santos. 2016. Training & quality as-
sessment of an optical character recognition model
for Northern Haida. In LREC.

Aidan Pine and Mark Turin. 2018. Seeing the Heilt-
suk orthography from font encoding through to Uni-
code: A case study using convertextract. Sustaining
Knowledge Diversity in the Digital Age, page 27.

Stephen VRice and Thomas ANartker. 1996. The ISRI
analytic tools for OCR evaluation. UNLV/Informa-
tion Science Research Institute, TR-96-02.

Tesseract Langdata. 2018. tesseract-ocr/langdata:
Source training data for Tesseract for lots of lan-
guages. https://github.com/tesseract-ocr/
langdata. (Accessed on 10/22/2018).

The Unicode Consortium, editor. 2018. The Unicode
Standard, Version 11.0.0. The Unicode Consortium,
Mountain View, CA.

Unicode Standard Annex #29. 2018. Unicode text seg-
mentation. Edited by Mark Davis. An integral part
of The Unicode Standard. http://unicode.org/
reports/tr29/. (Accessed on 10/22/2018).

W3Techs. 2018. Usage statistics of charac-
ter encodings for websites, october 2018.
https://w3techs.com/technologies/
overview/character_encoding/all. (Ac-
cessed on 10/22/2018).

https://brew.sh/
https://github.com/tesseract-ocr/langdata
https://github.com/tesseract-ocr/langdata
http://unicode.org/reports/tr29/
http://unicode.org/reports/tr29/
https://w3techs.com/technologies/overview/character_encoding/all
https://w3techs.com/technologies/overview/character_encoding/all

	Proceedings of the Workshop on Computational Methods for Endangered Languages
	2-26-2019

	OCR Evaluation Tools for the 21st Century
	Eddie A. Santos
	Recommended Citation


	OCR evaluation tools for the 21st century



