A biscriptual morphological transducer for Crimean Tatar

Francis M. Tyers
Department of Linguistics
Indiana University
ftyers@iu.edu

Jonathan North Washington
Linguistics Department
Swarthmore College
jonathan.washington@swarthmore.edu

Darya Kavitskaya
Slavic Languages and Literatures
U.C. Berkeley
dkavitskaya@berkeley.edu

Memduh Gökirmak
ÚFAL
Univerzita Karlova in Prague
memduhg@gmail.com

Nick Howell
Faculty of Mathematics
Higher School of Economics
nlhowell@gmail.com

Remziye Berberova
Department of Crimean Tatar
Crimean Tavrida University
bra.berberova@yandex.ua

Abstract

This paper describes a weighted finite-state morphological transducer for Crimean Tatar able to analyse and generate in both Latin and Cyrillic orthographies. This transducer was developed by a team including a community member and language expert, a field linguist who works with the community, a Turkologist with computational linguistics expertise, and an experienced computational linguist with Turkic expertise.

Dealing with two orthographic systems in the same transducer is challenging as they employ different strategies to deal with the spelling of loan words and encode the full range of the language’s phonemes and their interaction. We develop the core transducer using the Latin orthography and then design a separate transliteration transducer to map the surface forms to Cyrillic. To help control the non-determinism in the orthographic mapping, we use weights to prioritise forms seen in the corpus. We perform an evaluation of all components of the system, finding an accuracy above 90% for morphological analysis and near 90% for orthographic conversion. This comprises the state of the art for Crimean Tatar morphological modelling, and, to our knowledge, is the first biscriptual single morphological transducer for any language.

1 Introduction

This paper presents the development and evaluation of a free/open-source finite-state morphological transducer for Crimean Tatar that is able to analyse and generate both Latin and Cyrillic orthographies. As an example, this transducer can map between the analysis köy<n><px3sp><loc> ‘in the village of’ and both of the possible orthographic forms, in Latin köyünde and in Cyrillic коюнде.

This paper is structured as follows: Section 2 presents background on Crimean Tatar and its orthographic systems; Section 3 gives an overview of the current state of computational analysis of Crimean Tatar morphology; Section 4 presents certain challenging aspects of Crimean Tatar morphology and their implementation; and Section 5 evaluates the transducer. Finally, Section 6 summarises possible directions for future work, and Section 7 provides concluding remarks.

2 Crimean Tatar

2.1 Context

Crimean Tatar ([qɯɾɯmtɑɾʧɑ], ISO 639-3: crh) is an understudied Turkic language of the Northwestern Turkic (Kypchak) subgroup (Johanson and Csató, 1998).² The language also shows a considerable influence from the Southwestern Turkic (Oghuz) subgroup, acquired via contact with Turkish, as well as more recent influence from the Southeastern Turkic subgroup, due to the nearly 5-decade-long resettlement of the entire Crimean Tatar population of Crimea to Central Asia (predominantly to Uzbekistan) by the Soviet government in 1944. It shares some level of mutual intelligibility with other languages in these subgroups, but is an independent language. The geographical location of Crimean Tatar in reference to other NW (Kypchak) and SW (Oghuz) varieties is shown in Figure 1.

Currently, about 228,000 speakers of Crimean Tatar have returned to Crimea, and another 313,000 live in diaspora (Simons and Fennig, 2018). Almost all speakers of Crimean Tatar are bilingual or multilingual in Russian and the language of the place of their exile, such as Uzbek, Kazakh, or Tajik.

²Crimean Tatar and [Kazan] Tatar (tat) happen to share a name, but are only related in that they are both Northwestern Turkic languages—though members of different subgroups.
Crimean Tatar is spoken mostly by the older population, but the usage may be rising, due to the increasing efforts in the community to teach the language to the younger generation, despite impedance caused by the generally unfavourable sociolinguistic situation.

2.2 Orthographic systems
As previously mentioned, Crimean Tatar can be written with two orthographic systems, one based on the Latin alphabet and one based on the Cyrillic alphabet. Both orthographies are widely used and have varying degrees of official support. They have different ways of treating phenomena such as front rounded vowels, the uvular/velar contrast in obstruents, and loanwords from Russian.

The Latin orthography contains 31 characters, and uses no digraphs except for foreign sounds in borrowings. Each phoneme is represented using a distinct character; for example, ‹ö› for the non-high back rounded vowel and ‹ö› for its front counterpart. The diacritics tilde (‹ñ› for [ŋ]), cedilla (e.g., ‹ş› for [ʃ]) and diaeresis (e.g., ‹ö› for [ø]) are used as components of characters for sounds that are not covered in a straightforward way by the basic Latin alphabet. In the Latin orthography, Russian words are treated as adapted to the phonology of Crimean Tatar, such as ‹bucet› ‘budget’—as opposed to ‹byudjet›, a more faithful rendering in the Latin orthography of the pronunciation of the Russian бюджет. However, most loanwords are pronounced as in Russian, yet are rendered more faithfully to their Russian spelling than to their Russian pronunciation; for example, ‹konki› for Russian коньки [kʊɲˈkʲi] ‘skates’ is pronounced as in Russian and not *[konki] as its Latin-orthography spelling would suggest.

The Cyrillic orthography contains the 33 characters of the Russian alphabet and four diagraphs for sounds not found in Russian: ‹дж› [ʣ], ‹гъ› [ʁ], ‹къ› [q], and ‹нъ› [ŋ]. The additional sounds [ɔ] and [ʊ] are implemented by either the use of the “soft sign” ‹ь› in conjunction with the letters for [o] ‹о› and [u] ‹у› or by using the corresponding “yoticised” vowel letters ‹ё› and ‹ю›, respectively; the particular system is clarified below. Russian words are spelled as in Russian, including the use of hard and soft signs and Russian phonological patterns. An example is коньки ‘skates’, in which the ‹ь› indicates that the [n] is palatalised.

Table 1 shows the basic mapping between the two orthographic systems.

<table>
<thead>
<tr>
<th>Latin</th>
<th>Cyrillic</th>
</tr>
</thead>
<tbody>
<tr>
<td>b c ć d f g ģ h j k l</td>
<td>б дж ч д ф г гъ х ж к л</td>
</tr>
<tr>
<td>m n ň r p q r s t v y z</td>
<td>м н й п къ р ст в й з</td>
</tr>
<tr>
<td>a á ä í ö ü á я я́ ю о́ ю</td>
<td>а я́ я́ ю о́ ю</td>
</tr>
</tbody>
</table>

While the Latin orthography represents the front vowels [ɔ] and [ʊ] simply as ‹ö› and ‹ü›, in the Cyrillic orthography they are represented in one of the following ways.

With the letters ‹о› and ‹у›:

- With a front-vowel character (‹ыв›, ‹е›) or one of the “yoticised” vowels (‹ё›, ‹ю›) following the subsequent consonant. This strategy is usually limited to the first syllable of a multisyllable word when in certain consonant contexts, and is more prevalent in open syllables. Examples include учюнджи [yʧ-ynʤi] ‘third’, кунюнде [kyn-yn-de] ‘on the day of’, болит [bol-ip] ‘having divided’, and муче [myʧe] ‘body part’.

- Either with the “soft sign” ‹ь› following the subsequent consonant or without if a “soft consonant” (i.e., velar pair to a uvular consonant), like [k] or [g], follows the vowel. This strategy is generally used only in the first syllable of a word when there is a following coda consonant. Examples include учь [yʧ] ‘three’,
The native part of the vocabulary, excluding loan words, and use an ASCII representation for the orthography. Their analyser is not freely available for testing so unfortunately we could not compare its performance to that of ours.

4 Methodology

To implement the transducer we used the Helsinki Finite-State Toolkit, HFST (Lindén et al., 2011). This toolkit implements the \texttt{lexc} and \texttt{twol} formalisms and also natively supports weighted FSTs. The former implements morphology, or mappings between analysis and morphological form, such as \texttt{köy<n><px3sp><loc> : köy\{s\}{I\{n\}>\{D\}{A}}}, while the latter is used to ensure the correct mapping between morphological form and orthographic (or “phonological”) form, such as \texttt{köy\{s\}{I\{n\}>\{D\}\{A\} : köyünde}. When compose-intersected, the transducers generated from these modules result in a single transducer mapping the two ends with no intermediate form, e.g., \texttt{köy<n><px3sp><loc> : köyünde}.

The choice to model the morphophonology using \texttt{twol} as opposed to using a formalism that implements sequential rewrite rules may be seen as controversial. Two-level phonological rules are equivalent in expressive power to sequential rewrite rules (Karttunen, 1993); however, from the point of view of linguistics, they present some differences in terms of how phonology is conceptualised. Two-level rules are viewed as constraints over a set of all possible surface forms generated by expanding the underlying forms using the alphabet, and operate in parallel. Sequential rewrite rules, on the other hand, are viewed as a sequence of operations for converting an underlying form to a surface form. As such, sequential rules result in intermediate forms, whereas the only levels of representation relevant to two-level rules are the morphological (underlying) form and the phonological (surface) form. While it may not be relevant from an engineering point of view, we find more cognitive plausibility in the two-level approach. Furthermore, the computational phonologist on our team finds the two-level model much less cumbersome to work with for modelling an entire language’s phonology than sequential rewrite rules. Readers are encouraged to review Karttunen (1993) for a more thorough comparison of the techniques.
4.1 Lexicon
The lexicon was compiled semi-automatically. We added words to the lexicon by frequency, based on frequency lists from Crimean Tatar Bible⁴ and Wikipedia⁵ corpora (see Section 5.1 for sizes). Table 2 gives the number of lexical items for each of the major parts of speech. The proper noun lexicon includes a list of toponyms extracted from the Crimean Tatar Wikipedia.

<table>
<thead>
<tr>
<th>Part of speech</th>
<th>Number of stems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Noun</td>
<td>6,271</td>
</tr>
<tr>
<td>Proper noun</td>
<td>4,123</td>
</tr>
<tr>
<td>Adjective</td>
<td>1,438</td>
</tr>
<tr>
<td>Verb</td>
<td>1,007</td>
</tr>
<tr>
<td>Adverb</td>
<td>87</td>
</tr>
<tr>
<td>Numeral</td>
<td>40</td>
</tr>
<tr>
<td>Pronoun</td>
<td>31</td>
</tr>
<tr>
<td>Postposition</td>
<td>21</td>
</tr>
<tr>
<td>Conjunction</td>
<td>20</td>
</tr>
<tr>
<td>Determiner</td>
<td>16</td>
</tr>
<tr>
<td>Total:</td>
<td>13,054</td>
</tr>
</tbody>
</table>

Table 2: Number of stems in each of the main categories.

4.2 Tagsets
The native tagset of the analyser is based on the tagsets used by other Turkic-language transducers⁶ in the Apertium platform.⁷ In addition we provide a mapping from this tagset to one compatible with Universal Dependencies (Nivre et al., 2016) based on 125 rules and a set overlap algorithm.⁸ The rules are composed of triples of (lemma, part of speech, features) and are applied deterministically longest-overlap first over the source language analyses.

4.3 Morphotactics
The morphotactics of the transducer are adapted from those of the Kazakh transducer described by Washington et al. (2014). The nominal morphotactics are almost identical between Kazakh and Crimean Tatar. The verbal morphotactics are rather different, and we here followed Kavitskaya (2010).

4.4 Transliterator
The transliterator is implemented as a separate substring-to-substring lexicon grammar and two ruleset.

The lexicon grammar defines a transducer which converts from the Latin orthography to a string where placeholders are given for the hard sign, soft sign, and some digraphs which are single characters in the Cyrillic orthography (e.g., ts = ў). The output may be ambiguous, for example the input string ѥѥ produces both ѥѥ (analysis, preceding transliteration) and a special symbol ў (also analysis) standing for Cyrillic ў (surface form). This is necessary because ѥѥ may map to either ў (борѥѥ = бору [боя] ‘borsch’) or ў (иги = иги [иги] ‘worker’).

The two ruleset defines a transducer which then maps the Latin string produced to strings in Cyrillic via the alphabet, and applies a set of constraints to restrict the possible combinations. All remaining theoretically valid mappings are kept. An example of one of these constraints is shown in Figure 2.

"e as э"

\[
\text{e:э} \iff \text{.#. } ; \\
\text{[e: | a: | i: | ü:] } ;
\]

Figure 2: An example of a two constraint used in the mapping of Latin strings to Cyrillic strings. This constraint forces Latin е [e] to be realised as Cyrillic э instead of Cyrillic е (which would in turn stand for [je]) at the beginning of the word and after certain vowels.

The resulting transducer takes surface forms in Latin script, and outputs surface forms in Cyrillic script. In order to get an analyser which analyses Cyrillic, we then composed the original [Latin] transducer with the transliteration transducer.

In order to be able to choose the orthographically correct variant for generation in the case of ambiguity in the conversion, we tried two corpus-based methods.

The first method we tried was simply to weight surface forms we saw in the corpus with a negative weight; since our transducer interprets lower weights as better, forms which were previously seen would always be given preference over those generated by the model on the fly. This was done by making a negative-weight identity transducer of the surface forms, composing with the transliteration transducer, and taking the union with the transliteration transducer alone.

The second method was to estimate probabilities for the generated transliterations using character n-
gram frequencies from the corpus. We used a particularly simplistic estimation technique: fix \(n \geq 1 \). We collect \(k \)-grams for \(k \leq n \), the collections of size \(n_k \) with redundancy. The probability assigned to the \(k \)-gram \(x \) is \(\frac{\#x}{n_k} \). Weights are chosen to be the negative logarithm of the probability. The unaugmented transliteration transducer is then composed with this new weighted transducer before being composed with the morphological transducer.

Transducers produced by the two methods are unioned; the result is then composed with the morphological transducer. Generated transliterations thus have many paths which they can follow to acceptance, assigning various weights. If the transliteration is a surface form observed in the training corpus, it is assigned a negative weight (given absolute preference). Unobserved transliterations are assigned positive weights based on possible segmentations; \(k \)-character segments are assigned weights from the \(k \)-gram counters, and the weight of a segmentation is the sum of the weights of the segments.

4.5 Error model

While working on morphological models for languages with a less-than-stable written norm, or where there is little support for proofing tools or keyboards, it is desirable to be generous with what forms are accepted while being conservative with what forms are generated. Orthographic variation is inevitable, and if we want to create a high coverage resource, then we should also take this variation into account. For example, in the corpus the locative of Belarus (the country) is written Belarus\text{de} 4 times, Belarusta twice and Belaruste 1 time. The normative spelling, to fit with the pronunciation [belarus] should be Belarusta; however, we would also like to be able to provide an analysis for the other variants. Based on an informal examination of 1,000 random tokens in the news and encyclopaedic corpora, we estimate that at least 0.8% of tokens in these corpora constitute non-normative orthographic forms of this type.

Our approach again is to use \texttt{twol}. First the rules for vowel harmony and other phonological phenomena were removed from the \texttt{twol} transducer that implements the normative orthography, leaving only unconstrained symbol mappings. This was then composed with the lexicon to produce a transducer which has all of the possible phonological variants (much like a fully expanded version of the \texttt{lexc} transducer). This was then subtracted from the normative transducer and a tag \texttt{<err_orth>} was appended to the analysis side of all remaining forms to indicate orthographic error, This was output into a transducer which accepts any phonological variant that was not normative and give an analysis with an extra tag. This was unioned with the normative transducer to produce the final analyser. This approach allows us to analyse prescriptively incorrect variants like Belaruste as Belarus\texttt{<np><top><loc><err_orth>}.

5 Evaluation

We have evaluated the morphological transducer in several ways. We computed the naïve coverage and the mean ambiguity of the analyser on freely available corpora (Section 5.1) as well as its accuracy (precision and recall) against a gold standard (Section 5.2). Additionally, we evaluated the accuracy of the transliteration transducer (Section 5.3).

5.1 Analyser coverage

We determined the naïve coverage and mean ambiguity of the morphological analyser. Naïve coverage is the percentage of surface forms in a given corpus that receive at least one morphological analysis. Forms counted by this measure may have other analyses which are not delivered by the transducer. The mean ambiguity measure was calculated as the average number of analyses returned per token in the corpus. These measures for three corpora, spanning both orthographies, are presented in Table 3.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Bible</td>
<td>Cyr</td>
<td>217,611</td>
<td>90.9%</td>
<td>1.86</td>
</tr>
<tr>
<td>Wiki</td>
<td>Lat</td>
<td>214,099</td>
<td>92.1%</td>
<td>1.86</td>
</tr>
<tr>
<td>News</td>
<td>Lat</td>
<td>1,713,201</td>
<td>93.7%</td>
<td>2.12</td>
</tr>
</tbody>
</table>

Table 3: Naïve coverage and mean ambiguity of the analyser on three corpora.

The transducer provides analyses for over 90% of tokens in each corpus, with each token receiving an average of around two analyses.

5.2 Transducer accuracy

Precision and recall are measures of the average accuracy of analyses provided by a morphological transducer. Precision represents the number of the

\footnote{The Bible and Wikipedia corpora are those described in Section 4.1, and the News corpus is content for the years 2014–2015 extracted from http://ktat.krymr.com/.}
analyses provided by the transducer for a form that are correct. Recall is the percentage of analyses that are deemed correct for a form that are provided by the transducer.

To calculate precision and recall, it was necessary to create a hand-verified list of surface forms and their analyses. We extracted around 2,000 unique surface forms at random from the Wikipedia corpus, and checked that they were valid words in the languages and correctly spelled. When a word was incorrectly spelt or deemed not to be a form used in the language, it was discarded.

This list of surface forms was then analysed with the most recent version of the analyser, and around 500 of these analyses were manually checked. Where an analysis was erroneous, it was removed; where an analysis was missing, it was added. This process gave us a ‘gold standard’ morphologically analysed word list of 448 forms.

We then took the same list of surface forms and ran them through the morphological analyser once more. Precision was calculated as the number of analyses which were found in both the output from the morphological analyser and the gold standard, divided by the total number of analyses output by the morphological analyser. Recall was calculated as the total number of analyses found in both the output from the morphological analyser and the gold standard, divided by the number of analyses found in the morphological analyser plus the number of analyses found in the gold standard but not in the morphological analyser.

After comparing with the gold-standard in this way, precision was 94.98% and recall was 81.32%.

Most of the issues with recall were due to missing stems in the lexicon, primarily nouns and proper nouns. Regarding the precision, common issues included incorrect categorisation in the lexicon, and dubious forms, such as the imperative of ‘need’, which is in the analyser and is a hypothetically possible form, but appears not to be possible in practice.

5.3 Transliterator accuracy

We evaluated the transliteration component on the headwords from a bilingual Crimean Tatar–Russian dictionary that has been published in both Cyrillic and Latin orthographies. We created a list of Cyrillic–Latin correspondences by aligning the headwords automatically based on an automated word-by-word comparison of the definitions in Russian, for a total of 14,905 unique entries.

141 entries (~1%) had comments which did not match word-for-word; while it is possible that these could be corrected by hand, we discarded them. We then fed the Latin entries to the full transliteration transducer and evaluated against the corresponding Cyrillic entry.

Table 4 shows the performance of the transliterator for the different methods. In this case, precision is the percentage of predictions which are correct, recall is the percentage of words for which a correct transliteration is predicted, and the F-score is the harmonic mean of the two: $F^{-1} = \frac{\text{mean}(\text{Prec}^{-1}, \text{Rec}^{-1})}{}$.

<table>
<thead>
<tr>
<th>Method</th>
<th>States</th>
<th>Precision</th>
<th>Recall</th>
<th>F-score</th>
</tr>
</thead>
<tbody>
<tr>
<td>–</td>
<td>114</td>
<td>53.0</td>
<td>98.4</td>
<td>68.9</td>
</tr>
<tr>
<td>1-gram</td>
<td>2,030</td>
<td>93.4</td>
<td>93.5</td>
<td>93.5</td>
</tr>
<tr>
<td>2-gram</td>
<td>17,382</td>
<td>94.1</td>
<td>94.2</td>
<td>94.1</td>
</tr>
<tr>
<td>3-gram</td>
<td>99,761</td>
<td>94.0</td>
<td>94.1</td>
<td>94.1</td>
</tr>
<tr>
<td>4-gram</td>
<td>290,201</td>
<td>94.4</td>
<td>94.6</td>
<td>94.5</td>
</tr>
<tr>
<td>5-gram</td>
<td>577,926</td>
<td>95.1</td>
<td>95.2</td>
<td>95.2</td>
</tr>
<tr>
<td>6-gram</td>
<td>924,719</td>
<td>95.5</td>
<td>95.6</td>
<td>95.5</td>
</tr>
<tr>
<td>7-gram</td>
<td>1,282,917</td>
<td>95.4</td>
<td>95.6</td>
<td>95.0</td>
</tr>
</tbody>
</table>

Table 4: Performance of the transliterator using different methods. States gives a measure of the size of the generated FST.

Without n-grams, there is no attempt to filter proposed transliterations; that is, this “null” method generates all possible transliterations according to the combined phonological-morphological transducer. It demonstrates the theoretical limit of recall. Precision dramatically increases with the introduction of n-grams, as expected. Precision increases with more n-grams, levelling off at just over 95%. Recall drops from the maximum of 98.4% (the theoretical maximum the n-gram system can hope to attain); as the quality of the statistical filter increases, so does recall, until it levels off at 95.6%.

The problems with the transliteration model consist almost entirely of issues related to the presence of hard and soft signs in Cyrillic spellings (accounting for 492 of 1007, or 48.9%, of errors), incorrect vowels, mostly related to yoticisation (accounting for 469, or 46.6%, of errors), and issues correctly

\footnote{Available from the repository as dev/annotate.txt.}

\footnote{Available in the repository as dev/annotate.all.txt.}

\footnote{However, note that the recall number may be somewhat inflated, as thinking of missing analyses for already analysed words is particularly difficult.}

\footnote{Available from http://medeniye.org/node/984.}
predicting “т” versus “те” (accounting for 40, or 4% of errors). These errors typically arise in loanwords, where the correct Cyrillic spelling is often impossible to predict from the Latin orthography. Accuracy regarding these issues could likely be improved by having a larger and more representative corpus of Crimean Tatar in Cyrillic with which to train the n-gram models, or by attempting to model the loanword system.

6 Future work

The performance of the n-gram model could be improved by modelling the predictability of the orthography in n-grams and with a sliding window to filter out unlikely concatenations of common n-grams.

Aside from expanding the lexicon, the transducer forms part of a machine translation system from Crimean Tatar to Turkish being developed in the Apertium platform. There is also the prospect of applying it to dependency parsing for Crimean Tatar, and there have been some preliminary experiments in this direction (Ageeva and Tyers, 2016). We would also like to apply the approach for dealing with multiple scripts to other Turkic languages, such as Uzbek, Kazakh, or Karakalpak, where more than one widely-used normative orthography is in use. An additional advantage of our approach is that when orthographic systems are replaced, as is currently occurring in Kazakhstan for Kazakh, there is no need to completely rewrite an existing mature transducer; instead, a supplemental transliteration transducer can be constructed.

7 Concluding remarks

The primary contributions of this paper are a wide-coverage morphological description of Crimean Tatar able to analyse and generate both Cyrillic and Latin orthographies, and a general approach to building biscriptual transducers.

Acknowledgements

This work was made possible in part by Google’s Summer of Code program, the Swarthmore College Research Fund, and the involvement of the Apertium open source community. We also very much appreciate the thoughtful, constructive comments from several anonymous reviewers.

References

