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Abstract 

We present a method for building a 
morphological generator from the output 
of an existing analyzer for Inuktitut, in the 
absence of a two-way finite state 
transducer which would normally provide 
this functionality.  We make use of a 
sequence to sequence neural network 
which “translates” underlying Inuktitut 
morpheme sequences into surface 
character sequences.  The neural network 
uses only the previous and the following 
morphemes as context.  We report a 
morpheme accuracy of approximately 
86%.  We are able to increase this 
accuracy slightly by passing deep 
morphemes directly to output for 
unknown morphemes.  We do not see 
significant improvement when increasing 
training data set size, and postulate 
possible causes for this. 

1 Introduction 

Morphological generation is the process of 
transforming an underlying sequence of 
morphemes (for example, a lemma or stem, plus 
inflections) into a surface realization of those 
morphemes.  For many languages which have 
complex morphology, morphological generation 
is a necessary step in certain language processing 
applications such as machine translation.  Finite 
state transducers (FSTs) have been the main 
technology used in morphological analysis and 
generation.  Most finite state transducers can 
operate in both directions, the analysis, or 
upward, direction and the generation, or 
downward, direction (Beesley & Karttunen, 
2003).  The Uqailaut morphological analyzer 
(Farley, 2009), which provides an analysis of 
Inuktitut words, however, only operates in the 
“analyze” direction, because this analyzer was 
hard-coded, not using currently widely used tools 

such as xfst (Beesley & Karttunen, 2003).  To 
make up for this lack of functionality,  we present 
a method for bootstrapping the output of the 
morphological analyzer to build a morphological 
generator that will work in the opposite direction, 
inspired by the analyzer bootstrapping technique 
in Micher (2017).  We do this using a sequence to 
sequence neural network architecture based on 
encoder-decoder networks to “translate” from the 
deep morpheme sequences to their corresponding 
surface forms, and we present accuracy results.  
We show that this technique has promise when 
building morphological generators when the 
associated analyzer does not operate in reverse.  
We envision the use of this generator as a post-
process to an English-Inuktitut machine 
translation system which translates English into 
sequences of underlying Inuktitut morphemes, to 
convert those deep morphemes to surface forms. 

2 Inuktitut Morphophonemics 

Inuktitut is a polysynthetic language spoken in the 
Canadian territory of Nunavut and other regions 
of Arctic Canada.  Inuktitut words tend to be very 
long because many morphemes can be added onto 
roots iteratively, often generating words which 
would correspond to full clauses in other 
languages.  In general, Inuktitut words consist of 
a root followed by zero or more lexical postbases, 
followed by a grammatical suffix and an optional 
clitic (Dorais, 1990).   The surface realization of 
each morpheme is based on specific 
morphophomemic rules which are unique to each 
morpheme and not conditioned wholly on their 
phonetic environment.  For example, the 
underlying morpheme sequence for the word 
“mivviliarumalauqturuuq” meaning “he said he 
wanted to go to the landing strip” is 
“mit+vik+liaq+juma+lauq+juq+guuq.”  The 
spelling rule for each morpheme must be learned 
individually, and also the final surface spelling 

Bootstrapping a Neural Morphological Generator  
from Morphological Analyzer Output for Inuktitut 

 
Jeffrey Micher 

US Army Research Laboratory 
2800 Powder Mill Road 

Adelphi, MD 20783 
jeffrey.c.micher.civ@mail.mil 



38
 

 

will be affected by the previous and following 
morphemes.  We work from the end to the 
beginning to understand this phenomenon in this 
example.  The morpheme ‘guuq’ is a UVULAR 
ALTERNATOR 1 , which means that the first 
phoneme ‘g’ will change according to what the 
previous morpheme ends with.  In this case, it 
surfaces as ‘r’ because of the uvular ‘q’ before it.  
The rule also deletes a previous consonant, so the 
‘q’ of ‘juq’ gets deleted.  Next, ‘juq’ is a 
CONSONANT ALTERNATOR, which means the 
first consonant gets spelled based on the ending of 
the previous morpheme.  In this case, it comes out 
as ‘t’ because the previous morpheme ends with a 
consonant.  Next, ‘lauq’ is NEUTRAL, so there 
are no changes (but if the following morpheme 
was a UVULAR ALTERNATOR, it would have 
lost its final ‘q’).  Next, ‘juma’ is like ‘guuq’ so it 
gets spelled ‘ruma’ and deletes the preceding ‘q’.  
Next, ‘liaq’ is a DELETER, so it deletes the 
previous morpheme’s final consonant ‘k’ and 
recall its ‘q’ was already deleted.  Next, ‘vik’ is a 
VOICER, which causes the previous ‘t’ to 
completely assimilate to ‘v’. 
 

3 The Uqailaut Analyzer and Sample 
Output 

The Uqailaut morphological analyzer takes a 
single input word and produces an analysis or set 
of possible analyses for words those words.  An 
analysis consists of a sequence of morphemes in 
curly braces.  Each morpheme consists of its 
surface form, deep form, and relevant 
morphological information such as person and 
number in the case of verbs, as is depicted below: 
 
{<surface form>:<deep form>/<morphological analysis 
information>}{..}{..}..etc. 
 
The following shows a typical analysis for the 
word ‘maligarmut,” meaning “bill, law; 
something that one follows,” in the dative case.  
For words with ambiguous analyses, each 
analysis is given on a separate line: 

 
{maligar:maligaq/1n}{mut:mut/tn-dat-s} 
{mali:malik/1v}{gar:gaq/1vn}{mut:mut/tn-dat-s} 
 

                                                           
1 The names of the rules are those of (Mallon, 2000) 

The Nunavut Hansard data set (Martin, Johnson, 
Farley, & Maclachlan, 2003), derived from 
Nunavut legislative proceedings, was processed 
with the Uqailaut (Micher, 2018a) analyzer to 
provide data for morphological analysis and 
machine translation experiments (Micher, 2018b), 
and is used again in this current set of 
experiments. 
 

4 Our Model 

We consider the task of morphological generation 
for Inuktitut as a sequence to sequence processing 
task similar to that of machine translation, and as 
such, we model our generator after current 
designs for machine translation and follow the 
work of (Kann & Schütze, 2017) and (Faruqui, 
Tsvetkov, Neubig, & Dyer, 2015).  Specifically, 
we use an encoder-decoder architecture with 
attention (Bahdanau, Cho, & Bengio, 2015) to 
encode input sequences of morphemes into a 
hidden state, then decode them into surface 
characters.  The encoder is a bidirectional LSTM 
(Hochreiter & Schmidhuber, 1997) and the 
decoder is a character RNN.  Different from MT 
models, however, we limit the encoder to consider 
only the current, previous, and following 
morphemes, which we essentially “translate,” 
letting the attention mechanism figure out that the 
sequence of three morphemes is focused on the 
central morpheme. The limiting of the context to 
the previous and following morpheme reflects the 
linguistic context for the operation of the 
morphophonemic rules of Inuktitut discussed 
above.   The figure below depicts the architecture. 

 
 

 
 

Figure 1: Architecture 
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5 Experiments 

For data, we use the same set of morphologically 
analyzed Inuktitut words as used in (Micher, 
2017) having a single morphological analysis, and 
hold out two sets of 1000 items (labeled ‘test’ and 
‘dev’), leaving approximately 23,000 training 
items.  
Our baseline system makes use of the architecture 
described above.  Morpheme embeddings are 
sized at 128, LSTM hidden states at 128, with 2 
layers.  We completed 35 epochs with SGD and a 
simple learning rate.  We did not use mini-
batching because of the small size of training 
data.  As is common in neural models, we replace 
infrequent deep morphemes with an <unk> 
symbol for those having fewer than two instances 
in the data, and verify that all of the morphemes 
present in the test sets are found in the training 
set. 
Our second system, Baseline+Backoff, makes use 
of a simple concept: when an unknown 
morpheme is encountered, rather than having the 
system try to generate a correct character 
sequence, we copy the deep morpheme directly to 
the surface, with no changes.  Because surface 
forms often contain many of the same character 
sequences as deep forms, this allows us to 
“guess” at the right form for those morphemes 
which may not be sufficiently represented in the 
data to accurately learn their behavior. 

6 Results 

We report a full word accuracy score: i.e. the 
percentage of test items completely correct; a 
morpheme accuracy score, i.e. how many 
morphemes are correct, on average, per word; an 
average Levenshtein edit distance, normalized 
over word length, by dividing the edit distance 
score per word by the number of characters in the 
original word; and a character BLEU-4 (Papineni, 
Roukos, Ward, & Zhu, 2002) score.  While the 
BLEU-4 score is traditionally used to compare 
MT system output between different systems, we 
felt that, as a modified precision score, which 
accounts for length, we could use it to capture a 
character-level accuracy.  The table below 
displays the systems and the scores obtained over 
the results from running the ‘test’ set through the 
model. 

 
 

 Full Word 
Accuracy 

Morpheme 
Accuracy 

Ave. Leven-
shtein 
Distance 

Character 
BLEU-4 

Baseline 60.46 86.24 0.036 91.89 
Baseline
+Backoff 

61.50 87.65 0.030 92.64 

 
Table 1: Results 

 
As can be seen, the Baseline+Backoff model 
performs better on all metrics.  It is interesting to 
note that, even in the non-character based metrics, 
we get an improvement by simply copying over 
unknown deep morphemes to the surface.  What 
this reflects is that a certain percentage of 
morphemes are identical in their deep and surface 
forms and the model is making mistakes on these, 
likely, rare morphemes. 
We further experimented with adding more 
training data.  From the morphologically analyzed 
words in the Nunavut Hansard, we used those that 
had 2, 3, and 4 analyses in addition to the data 
already used.   
 

# Analyses #  Words # Training Items 
2 28,841 57,682 
3 18,519 55,557 
4 21,275 85,100 

 
Table 2: Additional Training Data Set Sizes by 

Number of Analyses 
 
From these data, we created training sets in 
increments of 25K items over the baseline set, up 
to 200K items.  Each incremental set contained all 
of the training items from all of the smaller sets, 
including the baseline data set, using up first the 
2-analyses set, then the 3-analyses, and then the 
4-analyses sets.  As such, the divisions in the 
training sets do not correspond exactly to the 
divisions based on number of analyses.  We 
trained using the baseline system described 
earlier, and tested using the same held out sets as 
reported for the baseline system.  As of the 
writing of this paper, we are not seeing any 
significant improvements from the addition of 
training data over the baseline.  All systems are 
converging at roughly 86% morpheme accuracy, 
once comparable amounts of data have been seen 
over several epochs of training.  This result may 
seem counter to general trends in neural network 
training, in which greater amounts of training data 
produces better results.  However, it should be 
noted that the different analyses that are provided 
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by the Uqailaut analyzer are probably noisy: 
Uqailaut produces all possible analyses whether 
they are likely or semantically plausible or not.  
Also, the Uqailaut analyzer is built to account for 
dialectal spelling variation, which is frequent in 
the Nunavut Hansard, so learning a single, 
unambiguous application of a spell out rule of an 
underlying morpheme sequence from these data 
may be impossible.   A thorough error analysis 
could shed some light on what is happening with 
these training data and why additional data are not 
producing a more accurate system. 

7 Future work 

Ideally, we would like to refine this approach and 
get higher accuracy scores, within the 90% and 
above range, but as accurate as possible since we 
envision using this model in a downstream 
machine translation system, in which we hope to 
minimize the cascading of errors that is often seen 
in pipelined approaches.  Thus, in future work, we 
will conduct an error analysis to see why there is 
not more improvement with greater amounts of 
training data, and we will use an alternative 
source of data which can be vetted for accuracy 
and restricted to a single dialectal variant.  Also, 
we will try a comparable system which uses full-
word morpheme history instead of only the 
previous and following morpheme to account for 
any possible long distance dependencies that may 
be present in the data.  Finally, we will 
experiment with an unknown morpheme backoff 
to a character-level encoder, which may show 
further improvement as specific characters in an 
unknown morpheme will become salient for 
purposes of morphophonemic rule application. 

8 Related work 

Much work has been done on morphological 
generation. Recent work has focused on 
morphological reinflection (Cotterell, et al., 
2016), (Cotterell, et al., 2017) in which an 
inflected form is given, and a desired (different) 
inflected form should be produced.  Faruqui et al. 
(2015) show that a character-level neural model 
can predict surface forms from base forms plus 
morphological inflection information.  In our 
work, however, we investigate how well this 
technique works when only morphological 
context is provided and no explicit morphological 
rules or inflection information is given. 
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