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While the field of linguistics has slowly but surely widened the world’s knowledge about human 

language, thanks in part to the recent emphasis on language documentation and description of under-

documented languages, computational linguistics has barely expanded beyond a handful of 

economically or politically powerful languages. This paper is a synthesis of natural language processing 

(NLP) models and methods and a history about how the models and methods have been applied to the 

study of morphological structure, particularly in low-resource languages (LRL). The paper assumes that 

the study of morphology has an important role to play in both NLP and linguistics. It explores the 

potential for discovering newer and more efficient methods while training computational morphological 

models on data produced during language documentation and description (LDD) field projects.1  

Keywords: language documentation, natural language processing, NLP, low-resource languages, 

machine learning 

1. INTRODUCTION 

Morphology comprises word-building properties in human languages and their accompanying 

(morpho-)syntactic phenomena. Historically, computational linguists and “paper-and-pencil 

linguists” have taken different and sometimes seemingly incompatible approaches to morphology 

(Karttunen & Beesley 2005). Yet, despite their out-of-sync approaches, both computational 

linguistics and “traditional” linguistics benefit from morphological analysis (Cotterell et al. 2015). 

For natural language processing (NLP), work with low-resource languages (LRL) is still largely 

uncharted territory. This paper explores the limited work in morphology by asking this question: 

“What [computational] methods...can detect [morphological] structure in small, noisy data sets, 

while being directly applicable to a wide variety of languages?” (Bird 2009).  

The paper is organized as follows. Section 2 describes the workflow and activities of LDD. 

Section 3 sketches the history of NLP work with LRL. Section 4 defines morphological analysis 

and looks specifically at NLP applied to morpheme segmentation and glossing and Section 5 looks 

at the application to learning morphological inflectional paradigmatic patterns. 
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2. LANGUAGE DOCUMENTATION AND DESCRIPTION 

In linguistics, morphological description of a broad range of languages is a foundational step 

towards any reasonable linguistic theory. A focus of documenting and describing under-

documented languages, including their morphological structure, has been emphasized since the 

1990’s along with the development of language documentation as a distinct subfield. Himmelmann 

(1998) defines language documentation as “a comprehensive and representative sample of 

communicative events [that are] as natural as possible.” Woodbury (2003) defines it similarly as 

“comprehensive and transparent records supporting wide ranging scientific investigations of the 

language.” Language description can be defined as work that analyzes language documentation to 

create “systematic presentations of the phonology, morphology, syntax, and semantics of the 

language” (Bird & Chiang 2012). The emphasis on endangered languages over the past three 

decades has established best practices documenting a new language (Bowern 2008; Czaykowska-

Higgins 2009; Lupke 2010; Vallejos 2014; Rice & Thunder 2017). However, the specific activities 

that divide the two subfields are not rigid. Therefore, the current work generally refers to them 

together as “language documentation and description (LDD)” or “documentary and descriptive 

linguistics”. 

The workflow of LDD is not standardized, although most projects seem to follow a similar 

sequence. A version of one common sequence (Bird & Chiang 2012) is given below (the numbers 

are used to refer to each task, e.g., “task 2a” refers to transcription). Each subsequent task 

progressively encompasses more description than documentation, except archiving, which comes 

strictly under language documentation but is logically a last step. 

 

(1) Collect (audio/video recordings) naturally occurring speech 

(2) a) Transcribe and b) translate  

(3) Perform basic morphosyntactic analysis by segmenting the morphemes and creating 

morphological glosses and/or a lexicon 

(4) Elicit morphological paradigms that reveal underlying patterns 

(5) Prepare descriptive reports that outline the language’s structure 

(6) Archive data in a long-term repository 
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One primary output of this workflow is interlinear glossed texts (IGT), a data format distinctive to 

linguistics (Figure 1). Interlinearization is the primary task after transcription. It moves the 

workflow beyond simple documentation but still serves as a “preprocessing step” to language 

description (strictly defined) (Moon, Erk & Baldridge 2009). It comprises annotation tasks that 

enrich the data with analytic information added as lines under the transcribed text (task 1 in above 

workflow; line 1 in Figure 1). The most common lines are shown in Figure 1. Lines can be added 

in any order, but translations (task 2a; line 7) morpheme boundaries and morpheme glosses (task 

3; lines 2 and 3, respectively) are usually added first. Doing more annotation (e.g. lines 4-6) often 

happens in field projects, but translation, morpheme segmentation, and morpheme glossing are 

usually given the highest priority. 

 
FIGURE 1. INTERLINEARIZATION: 

INTERLINEAR GLOSSED TEXTS ADD LINES OF ANNOTATION TO THE ORIGINAL TEXT. 

 
 

Interlinearizing data uncovers the rarer and unique linguistic phenomena. Interlinearization opens 

the door for deeper linguistic analysis and lays the foundation for reference grammars, dictionaries, 

and language learning materials, but interlinearization is not sufficient to create complete 

grammars, dictionaries, etc. One additional descriptive task is often included: the  collection of 

morphological inflection patterns, or paradigms, for several lemmata (task 4). Inflectional 
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paradigms are elicited because complete paradigms are rarely found in natural language. Complete 

paradigms are needed to infer general rules of inflection.	

Without translations, morpheme segmentation, and glossing, the data is understandable only 

to someone who already speaks the language. If no speakers are left, the data is mostly 

inaccessible, much like Egyptian hieroglyphics before the Rosetta Stone was discovered. A few 

specially designed software tools provide limited automated assistance. The two most popular are 

ELAN (Auer et al. 2010) and FLEx (Rogers 2010). Examples of their interlinearization interfaces 

are shown in Figures 2 and 3. These tools implement hand-constructed, rule-based computational 

morphological parsers but rule-based parsers do not generalize to new data. FLEx also copies 

morpheme boundaries and glosses onto other words if they are identical to words that were 

previously annotated by hand. Neither tool incorporates machine learning.	

	
FIGURE 2. USER INTERFACE FOR INTERLINEARIZATION  

IN FIELDWORKS LANGUAGE EXPLORER (FLEX) DISPLAYING A MANIPURI [MNI] TEXT 
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FIGURE 3. USER INTERFACE FOR INTERLINEARIZATION  
IN ELAN SHOWING A PRACTICE SESSION IN ENGLISH 

 
	

3. NATURAL LANGUAGE PROCESSING (NLP) FOR LOW-RESOURCE LANGUAGES 

Though the line between documentation and description may not be clear, one thing is clear: 

current methods cannot easily process large amounts of data. Most archived corpora are only partly 

annotated because funding and time constraints do not allow complete interlinearization (Cox, 

Bouliame & Alam 2019). Methods currently that are today used commonly in LDD rely primarily 

on hand annotation which is extremely inefficient. The typical strategy of annotating texts from 

top to bottom is non-optimal for training a supervised machine learning model (Baldridge & 

Osborne 2008; Baldridge & Palmer 2009; Palmer 2009). Since naturally occurring speech contains 

many repeated linguistic structures, manual annotation has been described as repetitive, 

monotonous, costly, and time-consuming (Duong 2017; He et al. 2016). It can take anywhere from 

20 to 100 hours to transcribe (task 2a) a single hour of speech (Seifart et al. 2018) and it is 

reasonable to assume that interlinearization (tasks 2b and 3) and eliciting morphological paradigms 

(task 4) require significantly more time. 

A recent growth of NLP interest in low-resource languages (LRL) has brought machine 

learning models and methods that achieve good results even with LDD field data. A notable 

example is ELPIS (Foley et al. 2018), an online tool that includes a user interface accessible to 

those with no programming background. Machine translation (MT) has also been applied to 

documentary data, using the output of an automatic speech recognition system as input to the MT 

system (Anastasopoulos, Chiang & Duong 2016; Duong et al. 2016).  
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The potential for machine learning to perform morphological analysis during interlinearization 

has been clearly demonstrated (Baldridge & Palmer 2009; Palmer 2009; Palmer et al. 2010; Xia et 

al. 2016). For example, Felt (2012) found that when a round of annotation is done automatically 

by a machine learning model and then corrected by the human annotators, the annotators’ accuracy 

is improve if the machine learning model achieves at least 60% accuracy and significantly speeds 

manual annotation if it achieves an accuracy of 80%. In the area of morphological paradigm 

learning, the annual SIGMORPHON and CoNLL-SIGMORPHON shared tasks (Cotterell et al. 

2016; Cotterell et al. 2017; Cotterell et al. 2018; McCarthy et al. 2019; Nicolai, Gorman & Cotterell 

2020) have developed successful methods with limited training data.  

Although NLP interest in LRL has grown noticeably in the past few years, it is not a new area 

of research. Since the late 20th	 century, NLP has taken several approaches to low-resource 

languages that can be classified as either rule-based (i.e., finite state transducers) (e.g., Cotterell et 

al. 2015; Forsberg & Hulden 2016; Moeller et al. 2018; Moeller et al. 2019) or machine learning 

models that “learn” rules from data. Machine learning approaches to LRL can be classified 

according to whether the training data was annotated completely (supervised) (e.g., Bergmanis et 

al. 2017; Sudhakar & Singh 2017; Makarov, Ruzsics & Clematide 2017; Liu et al. 2018; Makarov 

& Clematide 2018a), partially (semi-supervised) (e.g., Ahlberg, Forsberg & Hulden 2014), or not 

at all (unsupervised) (e.g., Moon, Erk & Baldridge 2009; Palmer et al. 2010; Kirschenbaum, 

Wittenburg & Heyer 2012; Soricut & Och 2015).  

At first glance, unsupervised and semi-supervised learning seem most promising for LDD 

because they do not require as much manually annotated data. Supervised learning is trained on 

“gold standard” annotated data. However, even though supervised learning requires annotation, it 

needs much less data than unsupervised learning and almost always yields better results 

(Ruokolainen et al. 2013; Cotterell et al. 2015). Additionally, without annotated labels, 

unsupervised learning can only really cluster data by the latent patterns in the data. Discovering 

latent patterns might be quite useful for linguists when first exploring the data; for example, 

frequent character patterns and substrings that a model discovers could provide an initial 

hypothesis to the linguist about the language’s morphological structure. However, no matter how 

accurate an unsupervised model may be, it cannot substitute the valuable process of manually 

analyzing and discovering patterns in the data. Detailed analysis of new data is vital for linguists 

because through that process the linguist becomes familiar with the data and begins to absorb an 
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intuitive knowledge of the language. Nevertheless, the latent patterns discovered by unsupervised 

models can have many uses such as being leveraged in a semi-supervised approach. Semi-

supervised learning combines some supervised data with a larger set of unsupervised data 

(Kohonen, Virpioja & Lagus 2010; Poon, Cherry & Toutanova 2009). This approach is suitable if 

available annotated data is not adequate to effectively train a supervised model and it may be ideal 

for LDD because having substantial amounts of unannotated data with a small amount of annotated 

data is a common situation. Unfortunately, real applications of semi-supervised learning, 

specifically for computational morphology, are relatively rare, particularly with neural networks. 

There are exceptions, such as Ahlberg et al. (2014), where semi-supervised learning was used to 

induce morphological paradigms in low-resource settings.  

Until the 2010s, most machine learning models were feature-based with hand-designed 

features, illustrated in Figure 4. The input would be a hand-designed feature function that for 

morphological analysis might include 1) the whole word, 2) the position of the word in the 

sentence, 3) surrounding words or morphemes, 4) the POS tag of the previous morpheme/word. 

Features are assigned weights by the model during training to achieve optimal performance 

according to some objective function such as classification accuracy. For example, in a morpheme 

segmentation task where one chosen feature is the previous word and the previous word is some 

form of the English “to be” verb, and the target word ends in “ing”, then the model might give a 

high weight to the previous word so that the model pays attention to it when deciding how to 

segment a word ending in “ing”. The performance of feature-based models, such as Conditional 

Random Fields (CRF) and Support Vector Machines (SVM), relies heavily on the manual choice 

of features. This could be a drawback for under-described languages, because if little linguistic 

description is available, how does one know which features are optimal for that language? 

Fortunately, some feature-based models have been shown to perform reasonably well using 

language-independent features such as length of word or placement of letter in word (Ruokolainen 

et al. 2016; Moeller & Hulden 2018). 
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FIGURE 4. FEATURE-BASED MACHINE LEARNING REQUIRES  
A HUMAN TO IDENTIFY AND EXTRACT FEATURES THAT A FEATURE-BASED 

CLASSIFICATION MODEL SUCH AS A CRF USES TO PROVIDE THE CORRECT OUTPUT 

 
 

Currently, neural networks models, or deep learning models, are dominating NLP (Goldberg 

2017). Even though they outperform older, feature-based models on almost all tasks, they did not 

become popular until the mid-2010s because they require greater computing power and, for some 

tasks, train more slowly (Cotterell & Heigold 2017). Neural networks, illustrated in Figure 5, refers 

to a family of supervised machine learning models that are composed of layers of statistical units. 

The layers essentially substitute the feature engineering needed in non-neural machine learning. 

Multiple embedded layers allow the model to look at an exponential number of “semantically” 

neighboring instances of each training instance it encounters (Bengio et al. 2003). The layers create 

intermediate representations of the data that allow the model to “learn” a distributed representation 

of elements within each instance (e.g., a distributed representation of words within a sentence). 

This ability of the model to learn requires no (or at most, quite simple) manual feature design. 

Each unit in each layer is connected to each unit in the adjacent layers. Vector representations of 

the data are received by an input layer and transformed in “hidden” layers. The hidden layers feed 

into a final logistic function layer (i.e., softmax) that outputs a prediction of each possible class as 

a probability between 0 and 1. The connections between layers are represented by learnable 

weights; the higher the weight the more influence a unit has on the result. Since deep learning is 

supervised the weights are adjusted with feedback from the gold standard.2 This is done via 

stochastic gradient descent or some similar optimization algorithm (Goldberg 2017) and 

backpropagation, which tells the model how to change the parameters which build the 

representation of each layer from the previous layer (LeCun, Bengio & Hinton 2015). 
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FIGURE 5. NEURAL NETWORKS, OR DEEP LEARNING, MODELS LEARN WHAT FEATURES IN THE 
DATA ARE IMPORTANT FOR GIVING THE CORRECT OUTPUT 

 
 

Until recently, neural networks had the same great disadvantage that unsupervised learning has – 

superior performance required a great deal of data. Data from LDD would have been considered 

inadequate to train neural networks (Duong 2017). Even now, a non-neural model can outperform 

any given neural model that is not tuned to low-resource settings and neural models can be difficult 

to optimize and tune for low-resource settings (Popel & Bojar 2018). 

New methods are being explored to overcome neural models’ dependence on large corpora. 

Examples include fine-tuning a model to the specific task and input data, training intermediate 

steps, or augmenting the training data. van Biljon et al. (2020) looked at fine-tuning a model and 

determined that shallow- or medium-depth size Transformer models, for example only 3 encoder 

and 3 decoder layers, give better results with limited training data. An example of an intermediate 

training step would be first training a segmentation model to produce surface segments (morphs) 

and from them to learn underlying forms of morphemes (e.g., “impossible” à	“in-possible” à	

“neg-possible”) (Cotterell, Vieira & Schütze 2016; Liu et al. 2018; Moeller et al. 2019). The third 

successful method is augmenting training data. Augmentation can be done with artificial word 

forms (Liu et al. 2018) or with information extracted from other resources such as grammars and 

dictionaries. These are just a few of techniques that have been investigate; there are probably many 

more that we have not yet discovered. 

Although NLP research in LRL has been growing since the mid-2010’s, very little of it has 

been applied to linguistic on under-documented languages. One exception is the AGGREGATION 

project (Bender 2014) which has used IGT to automatically infer grammatical structure for 

multiple languages (Lepp, Zamaraeva & Bender 2019; Wax 2014). Much of their data comes from 
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the Online Database of INterlinear Text (Lewis & Xia 2010, ODIN) which is a collection extracted 

from published linguistic articles or books. These IGT excerpts differ from IGTs produced by field 

linguists in at least one important way. Noise (i.e., typos, inconsistencies, etc.) is generally 

removed before publication, so that ODIN does not have the level of noise that field IGT does 

which simplifies pre-processing and does not distract machine learning models with spurious 

patterns. 

4. MORPHOLOGICAL ANALYSIS 

Morphological analysis is a key activity in LDD. Morphological analysis is particularly 

important when working with morphologically complex languages. Languages that build words 

from multiple morphemes or via significant morphophonological changes produce a high number 

of inflected and compound words which appear to the machine as brand new, unrelated words 

(Dreyer & Eisner 2011; Goldsmith, Lee & Xanthos 2017; Hammarström & Borin 2011; Kann, 

Cotterell & Schütze 2016; Ruokolainen et al. 2013). NLP systems that account for morphology 

can reduce data sparsity caused by an abundance of individual word forms (McCarthy et al. 2019; 

Vylomova et al. 2020) and help mitigate bias in training data (Zmigrod et al. 2019). Computational 

morphological systems have often been limited to languages with publicly available structured 

data, for example, tables of inflectional patterns in online dictionaries like Wiktionary.	

Unfortunately, complete inflectional tables are not easily available for many of the world’s 

languages.  

Morphological analysis can be separated into two core tasks (Cotterell et al. 2015; 

Hammarström & Borin 2011; Nicolai & Kondrak 2017; Palmer 2009). The first task is identifying 

morphemes by determining their shapes and marking boundaries between them, as was done for 

the Lezgi noun in example 1b below. This is known as (unlabeled) morpheme segmentation 

(Creutz & Lagus 2007; Snyder & Barzilay 2008). The second task is deducing each morpheme’s 

meaning, which is known as parsing, or sometimes called morphological analysis by itself.3 	This 

single step is known in linguistics as glossing, and in computational linguists as labeled morpheme 

segmentation or, merely, labeling, or tagging.  

Together segmentation and glossing make up a significant part of interlinearization in 

documentary and descriptive linguistics. These two tasks (step 3 of Bird and Chiang’s workflow 

on) are often the most detailed analytical tasks undertaken while still in the field. They are also 
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perhaps the most time-consuming tasks, requiring at least as much, and probably more, time than 

transcription which can take up to 100 hours for each hour of recorded speech. The linguistic 

information provided by morpheme segments and glosses lays a vital foundation for subsequent 

descriptive work. 

Many NLP models have been applied to morpheme segmentation and glossing. Automatic 

morpheme segmentation is commonly traced to the early work of Harris (1955) and much 

segmentation research since then has implemented unsupervised learning which he inspired 

(Goldsmith 2001; Creutz & Lagus 2002; Poon, Cherry & Toutanova 2009). The preponderance of 

unsupervised models was probably motivated by the difficulty of finding the high quantity and 

quality manually segmented data needed to train supervised models. Lack of sufficient training 

data is illustrated by a recent supervised segmentation experiment (Ansari et al. 2019) which 

needed to manually segment a corpus before conducting the experiment.  

In LDD, segmentation and glossing are typically tackled simultaneously. Segmentation finds 

breaks between morphemes as for the Lezgi noun in 1b. Glossing labels morphemes with their 

meaning or function, as in 1c. Glossing does not require segmentation, and if done independently 

is sometimes referred to as parsing. Parsing by itself would only provide the information in 1c 

without indication of morpheme boundaries. 

 

(1) a. paçahdin 

  b. paçah-di-n 

  c. king-obl-gen 

  d. ‘king’s’ 

	

NLP experiments with LRL often treat segmentation and glossing as separate tasks. Other NLP 

works have taken a tip from LDD and joined the two tasks. Joint learning of segmentation and 

glossing, or labeled segmentation, is less common but has been successful for LRL (Cotterell et 

al., 2015; Moeller & Hulden, 2018). In general, joint learning is characterized by training on 

different types of information and is based on the intuition that one type of linguistic knowledge 

(e.g., syntax) can improve results in another domain (e.g., morphology) (Goldsmith et al., 2017). 

Much NLP work focuses on glossing only, which assumes that the data is already is, or does not 

need to be, segmented into morphemes. McMillan-Major (2020) trained systems to produce a gloss 



COLORADO RESEARCH IN LINGUISTICS, VOLUME 25 (2021) 

 

 12 

line by incorporating predictions made from existing segmentations and from the free translation 

enriched with INTENT (Georgi 2016). Both Samardzic et al. ( 2015) also used information from 

other IGT lines such as translation and part-of-speech tags to train a system to gloss. 

5. INFLECTIONAL PARADIGM LEARNING 

Morphology includes the inference of rules that govern word building strategies and the 

discovery of how word forms are systematically related (Roark & Sproat 2007). Therefore, 

Virpioja et al. (2011) add a third task to morphological analysis: identification of morphologically 

related words through patterns of inflection. 

Durrett and DeNero (2013) claim that the inference of inflectional patterns must be based on 

three assumptions. First, each lexical category is dictated by a subsystem of rules. Russian nouns, 

for example, can be generalized into three simplified patterns of inflection that are usually labeled 

“masculine”, “feminine”, and “neuter”. Lexemes that adhere to the same pattern are grouped into 

inflectional classes (sometimes called “declensions” for nouns and adjectives and “conjugations” 

for verbs). The patterns themselves are known as inflectional paradigms. Second, inflectional 

changes are triggered by context and, therefore, the patterns can be inferred from context. 

Descriptive studies look to phonology or else to both phonological structure and the semantic 

content of the lexeme for the triggering context. Computational models, due to the nature of their 

input, look to orthographic context. The third assumption is that each stem morpheme is inflected 

consistently according to the inflectional class it belongs to with any idiosyncrasies of the stem 

itself.  

Monson et al. (2007) give two guiding principles for computational paradigm learning. One is 

that inflected forms of a lemma look similar to each other. This principle holds well enough to 

serve as a solid working assumption, although languages abound with exceptions and inflection 

can even be suppletive (e.g., go	vs. went, etc.). The second principle is that “in any given corpus, 

a particular lexeme will likely not occur in all possible inflected forms”. Inflectional paradigms 

can be quite large. Languages may have hundreds or even thousands of forms per lemma (Corbett 

2013). Even with a large corpus, attempts to learn paradigms, like the one illustrated in Figure 6, 

by only using the corpus will leave empty cells in the paradigm’s table. It is possible that certain 

forms may never occur in natural language even though they are grammatically possible 

(Silfverberg & Hulden 2018). Additionally, frequent words often follow irregular patterns, as does 
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the English verb be. For these reasons, the LDD workflow includes elicitation of morphological 

paradigms (Lupke 2010; Boerger et al. 2016). 

 
FIGURE 6. INFLECTIONAL PARADIGM OF THE ENGLISH VERB “TO BE” 

 
 

Computational models can learn frequent and regular paradigmatic patterns with over 90% 

accuracy even in low-resource settings (Hammarström & Borin 2011; Durrett & DeNero 2013; 

Ahlberg, Forsberg & Hulden 2014). Most early work on paradigm induction applied unsupervised 

learning to concatenative morphology (Goldsmith 2001; Chan 2006; Monson et al. 2007). The 

unsupervised version of the paradigm completion task (Jin et al. 2020) has been the subject of a 

recent shared task (Kann et al. 2020), with the conclusion that it is extremely challenging for 

current state-of-the-art systems. Semi-supervised models have been more recently applied on 

concatenative and non-concatenative languages (Dreyer & Eisner 2011; Durrett & DeNero 2013). 

Supervised learning has also been applied to inflectional morphology. Some work focuses on 

generating inflected forms, including work motivated by the Paradigm Cell Filling Problem 

(PCFP), illustrated in Figure 7 (Ackerman, Blevins & Malouf 2009). The PCFP is framed as an 

attempt to model how new speakers (e.g., young children ) infer the inflected forms they have not 

yet encountered (Dreyer & Eisner 2011; Ahlberg, Forsberg & Hulden 2015; Malouf 2016; 

Silfverberg & Hulden 2018). 
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FIGURE 7. ILLUSTRATION OF THE PARADIGM CELL FILLING PROBLEM 
(SILFVERBERG AND HULDEN, 2018) WITH SPANISH VERB PARADIGMS 

 
 

Other work with supervised learning has attempted to induce inflectional paradigms from text. 

With this method, paradigms are completed by finding overlapping patterns from several 

incomplete paradigms in text. One method does this by abstracting the longest common 

subsequence of characters in inflected forms of the same lexeme and then clustering words with 

same or similar patterns (Ahlberg, Forsberg & Hulden 2014; Ahlberg, Forsberg & Hulden 2015). 

This is illustrated in Figure 8. Exceptions or irregularities in the paradigms can be accounted for 

by collapsing the similar patterns. The experiment has been quite successful for a few Indo-

European languages (German, Spanish, Catalan, French, Galician, Italian, Portuguese, Russian), 

as well as Maltese and Finnish. Kann et al. (2017a) differed from other approaches in that they 

encoded multiple inflected forms of a lemma to provide complementary information in order to 

generate unknown forms. Cotterell et al. (2017) introduced neural graphical models which 

completed paradigms based on principal parts.  
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FIGURE 8. AHLBERG ET AL. (2015): INDUCING PARADIGMS 

 
The longest common subsequences (LCS) rng	or swm	are extracted (step 1) and represented as x1	and x2	which replace 

the LCS (step 2). Words with the same inflectional patterns will be identical (step 3) and can be generalized into 

paradigms (step 4). The remaining characters i, a, u	are assumed to be inflectional affixes. 

 

Most recent work in paradigm induction has been concerned with generation (as opposed to 

analysis) of inflected words and has focused on morphological inflection or reinflection (Durrett 

& DeNero 2013; Nicolai, Cherry & Kondrak 2015; Faruqui et al. 2016; Kann & Schütze 2016; 

Aharoni & Goldberg 2017). Partially building on these, other research has developed machine 

learning models which are more suitable for LRL and perform well with limited data (Kann, 

Cotterell & Schütze 2017b; Sharma, Katrapati & Sharma 2018; Makarov & Clematide 2018b; Wu 

& Cotterell 2019; Kann, Bowman & Cho 2020; Wu, Cotterell & Hulden 2021).  

6. CONCLUSION 

Morphology comprises word-building properties in human languages and their accompanying 

(morpho)syntactic phenomena. Historically, NLP and “paper-and-pencil linguists” have taken 

different and sometimes seemingly incompatible approaches to morphology (Karttunen & Beesley 

2005). Despite their out-of-sync approaches, both benefit from morphological analysis (Cotterell 

et al. 2015). Morphological analysis includes morpheme segmentation, glossing, and learning 

inflectional paradigmatic patterns. This paper presented the history of computational models for 

morphological analysis and looked specifically at their application and success when limited 

training data is available. The work discussed in this paper demonstrate that computational models 
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and methods can both successfully perform morphological analysis. This success may be of great 

benefit for the documentation and description of endangered or under-documented languages. 
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ENDNOTES 

 
1 According to LORELEI (https://www.darpa.mil/program/low-resource-languages-for-emergent-

incidents), ``low-resource'' refers to languages for which no automated human language 

technology exists. This is due to a lack of linguistic resources. 

\citet{szymanski_morphological_2012} estimates that 99\% of the world's languages are 

``resource-poor''. In linguistics, it is more common to hear other terms. The current work uses the 

term ``under-described languages'' to refer to languages with minimal published linguistic 

resources; these have been called ``very scarce-resource language'' \citep{duong_natural_2017}. 

The term ``under-documented languages'' (Duong's ``extremely scarce-resource languages'') refer 

to languages that lack sufficient raw or annotated data to write a full reference grammar. The term 

``endangered languages'' refers to languages that are predicted to have no native speakers within a 

generation or two. Most endangered languages are under-documented and/or under-described, as 

well as fitting the definition of low-resource languages. The distinctions between the terms are 

rarely crucial in the current work. In practice, these terms can be used almost interchangeably. 

 
2 Deep learning morphological segmentation has been performed on unsupervised texts with some 

success (Wang et al. 2016). 

 
3Nicolai and Kondrak (2017) subdivide morphological analysis slightly differently, making a 

distinction between morphological “analysis” and morphological tagging. They describe 

morphological analysis as a combination of segmentation and labeling, though they later state that 

“morphological tagging can be performed as a downstream application of morphological analysis” 

(p. 211), thereby adhering to the same two distinctions described in this section. 


