
Linguistic Issues in Language Technology – LiLT
September 2010

Generating with Discourse

Combinatory Categorial Grammar

Crystal Nakatsu

Michael White

Submitted, April 2010
Revised, September 2010

Published by CSLI Publications

LiLT volume 4, issue 1 September 2010

Generating with Discourse Combinatory
Categorial Grammar

Crystal Nakatsu, The Ohio State University, Michael White,
The Ohio State University

Abstract. This article introduces Discourse Combinatory Categorial
Grammar (DCCG) and shows how it can be used to generate multi-
sentence paraphrases, flexibly incorporating both intra- and inter-
sentential discourse connectives. DCCG employs a simple, practical
approach to extending Combinatory Categorial Grammar (CCG) to
encompass coverage of discourse-level phenomena, which furthermore
makes it possible to generate clauses with multiple connectives and
— in contrast to approaches based on Rhetorical Structure Theory —
with rhetorical dependencies that do not form a tree. To do so, it bor-
rows from Discourse Lexicalized Tree Adjoining Grammar (D-LTAG)
the distinction between structural connectives and anaphoric discourse
adverbials. Unlike D-LTAG, however, DCCG treats both sentential and
discourse phenomena in the same grammar, rather than employing a
separate discourse grammar. A key ingredient of this single-grammar
approach is cue threading, a tightly constrained technique for extending
the semantic scope of a discourse connective beyond the sentence. As
DCCG requires no additions to the CCG formalism, it can be used to
generate paraphrases of an entire dialogue turn using the OpenCCG
realizer as-is, without the need to revise its architecture. In addition,
from an interpretation perspective, a single grammar enables easier
management of ambiguity across discourse and sentential levels using

1

LiLT Volume 4, Issue 1, September 2010.
Generating with Discourse Combinatory Categorial Grammar.
Copyright c© 2010, CSLI Publications.

2 / LiLT volume 4, issue 1 September 2010

standard dynamic programming techniques, whereas D-LTAG has re-
quired a potentially complex interaction of sentential and discourse
grammars to manage the same ambiguity. As a proof-of-concept, the
article demonstrates how OpenCCG can be used with a DCCG to gen-
erate multi-sentence paraphrases that reproduce and extend those in
the SPaRKy Restaurant Corpus.

1 Introduction

In this article, we introduce Discourse Combinatory Categorial Gram-
mar (DCCG), a simple, practical approach to extending Combinatory
Categorial Grammar (CCG; Steedman, 2000, Steedman and Baldridge,
2009) to encompass coverage of discourse-level phenomena. DCCG
treats both sentential and discourse phenomena in the same grammar,
with no additions required to the CCG formalism. In this way, DCCG
can be used with existing CCG chart realization techniques (White,
2004, 2006a,b) to generate paraphrases that are not confined to single
sentences, but rather allow for a flexible treatment of both intra- and
inter-sentential discourse connectives (such as but or also).

DCCG follows Discourse Lexicalized Tree Adjoining Grammar (D-
LTAG; Webber et al., 2003, Forbes et al., 2003, Webber, 2004, Forbes-
Riley et al., 2006) in distinguishing two types of discourse connectives:
1) structural connectives (i.e., coordinating and subordinating conjunc-
tions as well as paired conjunctions such as not only . . . but also and on
the one hand . . . on the other hand), whose discourse arguments must
be adjacent to one another; and 2) discourse adverbials (e.g. then, also,
otherwise, instead), whose first discourse argument is anaphoric and
need not be structurally adjacent to its second argument. By following
D-LTAG in distinguishing discourse adverbials from structural connec-
tives, it becomes possible to generate clauses with multiple connectives
— as long as there is no more than one structural connective — and to
handle rhetorical dependencies that do not form a tree, in contrast to
traditional generation approaches based on Rhetorical Structure The-
ory (RST; Mann and Thompson, 1988). However, DCCG departs from
D-LTAG in that it extends a sentential grammar to include discourse
phenomena, in contrast to the D-LTAG approach where a separate
discourse grammar applies to the derivations of the sentential gram-
mar.1 A key ingredient of our single-grammar approach is the use of

1As D-LTAG’s proponents have not advocated the use of two grammars — in-
stead emphasizing the similarly lexicalized nature of syntactic and discourse pro-
cessing — it is not clear whether this aspect of their approach is an inherent one,
though it is common to existing formalizations and to the single implementation
effort to date. To avoid awkward circumlocutions, in the rest of the paper we will

Generating with Discourse Combinatory Categorial Grammar / 3

cue threading, a tightly constrained technique in which a cue feature on
categories is used to record the presence of an intersentential structural
connective in a clause, and to thread this information from the clause
to the point in the derivation where the connective’s semantics takes
scope, thereby extending the connective’s scope beyond the sentence.
Allowing structural connectives to extend their scope in this way makes
it unnecessary to use two grammars to accomplish the same end.

An important advantage of employing a single grammar, as in
DCCG, is that there is no need to solve the knotty problem of how to
efficiently manage the interaction of the two grammars, since with the
single-grammar approach existing dynamic programming techniques
can be used off-the-shelf. From the interpretation perspective, a par-
ticularly interesting difficulty with using two grammars is that some
connectives are ambiguous between sentential and discourse uses, and
thus they pose the problem of determining which is the operative gram-
mar when using separate sentence and discourse grammars. In addition,
in contrast to D-LTAG, where the treatment of structural connectives
in medial position is complicated by the need to reanalyze them as if
they appeared initially, DCCG can handle such connectives straight-
forwardly, since cue threading can be used with the same syntactic
categories normally used in sentential grammars.

As a proof-of-concept, we have developed a DCCG to generate com-
parative descriptions like the ones in the SPaRKy Restaurant Corpus
(Walker et al., 2007), as well as additional comparative descriptions
that go beyond those produced by SPaRKy. With this hand-crafted
grammar, several hundred to several thousand multi-sentence para-
phrases can typically be generated from a disjunctive logical form that
compactly specifies the possible realizations. These realizations range in
quality from excellent to nearly unreadable, and thus a ranking model is
needed to separate the wheat from the chaff. As developing good rank-
ing models for these multi-sentence paraphrases is a largely separate
task, we leave it for future work.

The rest of the article is structured as follows. Section 2 reviews D-
LTAG, including the distinction between structural and anaphoric con-
nectives, as well as the complexities involved with positing separate sen-
tential and discourse grammars. Sections 3 and 4 review CCG syntactic
derivations and Hybrid Logic Dependency Semantics (HLDS; Kruijff,
2001, Baldridge and Kruijff, 2002, White, 2006b), respectively, where
the latter is the form of compositional semantics used with OpenCCG.

leave aside the possibility that D-LTAG might be formalized and implemented in a
different way.

4 / LiLT volume 4, issue 1 September 2010

Section 5 introduces DCCG, showing how cue threading can be used to
extend the semantic scope of a structural connective beyond the sen-
tence, and how anaphoric connectives can be used to handle non–tree
structured rhetorical dependencies. Section 6 illustrates how DCCG in-
puts can be derived from the content plans in the SPaRKy Restaurant
Corpus. Section 7 compares our approach to related work on discourse
and generation, including those based on RST. Finally, Section 8 con-
cludes with a summary and discussion of future work.

2 D-LTAG

A Discourse Lexicalized Tree Adjoining Grammar (D-LTAG; Webber
et al., 2003, Forbes et al., 2003, Webber, 2004, Forbes-Riley et al.,
2006) is a Lexicalized Tree Adjoining Grammar (LTAG) that models
the discourse structure of a multi-clausal utterance or text. A D-LTAG
is paired with a sentential LTAG for the lower level syntactic structure,
and together, the two grammars are intended to deliver a complete
structural analysis of a multi-clausal discourse.

As noted in the introduction, D-LTAG models two types of discourse
connectives: structural connectives and discourse adverbials. Structural
connectives include coordinating and subordinating conjunctions as
well as paired connectives such as on the one hand . . . on the other
hand. These connectives relate discourse unit arguments that must be
found structurally adjacent to one another, and provide a primary tree
structure for a discourse. Discourse adverbials, in contrast, are argued
to make an anaphoric, rather than structural, connection with the pre-
vious discourse. With discourse adverbials, such as then or also, one
discourse unit argument is provided syntactically, while the other is re-
solved anaphorically, and thus has no structural adjacency restrictions
on its potential location in the prior discourse (Webber et al., 2003).
Consequently, the rhetorical relations established by discourse adver-
bials, together with those from structural connectives, need not form a
tree.

As an example of both types of connectives, the multi-sentence com-
parison2 in (1) has been split into discourse units that correspond to
individual clauses (for reference, each clause has been given a unique
ID). Using these basic clauses as the minimal discourse units, the struc-
ture of a given text can be illustrated as a graph with a primary tree
structure, where the leaves of the tree are the basic clauses (or simple

2The comparative examples in this paper are from the same domain as those
produced by the SPaRKy Sentence Planner. They are mostly similar to the types
of sentences SPaRKy produces, in terms of syntax and content, though some go
beyond SPaRKy in ways which will be detailed in Section 5.

Generating with Discourse Combinatory Categorial Grammar / 5

contrast

hhhhhhhhhhhhh

VVVVVVVVVVVVV

evidence

qqqqqqq
MMMMMMM evidence

qqqqqqq
MMMMMMM

b1 h1 b3 contrast

qqqqqqq
MMMMMMM

additive h2

VV

h3

FIGURE 1 The discourse structure of the multi-sentence discourse in (1)

discourse units), and each non-terminal node is considered a complex
discourse unit. A non-terminal indicates a structural relation that holds
between its child nodes, while arcs from one leaf node back to a previous
one indicate an anaphoric relation. Thus, Figure 1 shows the discourse
structure for (1), illustrating that the contrast relations signaled by
the structural connectives however3 and while connect structurally ad-
jacent discourse units, whereas the additive relation signaled by the
discourse adverbial also4 connects a discourse unit to a non-adjacent
antecedent discourse unit by an anaphoric link. Lastly, there are im-
plicit (i.e. not realized with an overt connective) evidence relations,
also between adjacent discourse units.

(1) b1: Bienvenue is a mediocre restaurant.

h1: It has poor decor and mediocre food quality.

b3: However, Sonia Rose is a good restaurant.

h2: While it also has poor decor,

h3: it has excellent food quality.

Since D-LTAG is a lexicalized grammar, each discourse connective
(of either type) is represented in the lexicon by entries pairing a connec-
tive and an elementary tree (either initial or auxiliary). These elemen-

3The empirical status of however as a structural connective or discourse adver-
bial remains unclear. We will follow Forbes et al. (2003) in treating however as a
structural connective — which is the more constrained case — in order to show that
it is possible to do so in DCCG.

4Although this usage of also has not typically been treated on a par with other
discourse connectives, as discussed further in Section 7, we focus on it because it
plays an important role in making some contrastive statements more natural. For
the purposes of showing how discourse adverbials are handled in the grammar, also
serves equally well as more commonly discussed adverbials such as then or otherwise.

6 / LiLT volume 4, issue 1 September 2010

Computing Discourse Semantics 5

adverbs and prepositional phrases called discourse adverbials, and even some
verb forms such as “provided that” and imperative “suppose”.

D-LTAG has both initial trees and auxiliary trees. Initial trees localize
the predicate-argument dependencies of discourse connectives. For example,
the tree family associated with subordinating conjunctions contains the two
initial trees shown in Figure 4 with the anchor although, representing the ba-
sic syntactic alternations shown in (3a)-(3b) that subordinating conjunctions
display relative to their arguments (Quirk et al., 1985).1

(3) a. John is very hard to find, although he is very generous.
b Although John is very generous, he is very hard to find.

D W� � � �����
D W � although D W � D W� � � �X X����

although D W � D W �
Figure 4. D-LTAG Initial Trees for Subordinating Conjunctions

In LTAG, subordinated clauses are treated as adjuncts because they are not
part of the extended projections (e.g. argument structure) of the verb of the
main clause. In D-LTAG, however, it is the extended projections of discourse
connectives that are being modeled: for example, subordinating conjunctions
relate two clausal interpretations to form a larger discourse unit and are thus
represented as taking two structural arguments. (As such, we call them struc-
tural connectives.) As is also true of local dependencies at the clause level
(e.g. Apples, Bill says John may like.), these dependencies can be stretched
long-distance via adjunction of additional clause units, as shown in (4).
(4) a. Although John is very generous -

b. if you need some money,
c. you only have to ask him for it -
d. he’s very hard to find.

Two types of auxiliary trees are used in D-LTAG. The first is for structural
connectives that convey a continuation of the prior discourse, e.g. a modifi-
cation that serves to further a description of a discourse situation or of one
or more entities within it (Webber et al., 2003). Auxiliary trees for and and
the empty connective Y are shown in Figure 5. While both arguments in these
trees come structurally, one comes via substitution, while the other comes via
adjunction to a discourse unit in the prior discourse. Continuation is thus akin
to the notion of elaboration in Knott et al. (2001), as exemplified in (5).
(5) John went to the zoo [and/.] H/he took his cell phone with him.

1 In displaying D-LTAG trees, we suppress annotation of feature structures, as constraints
on how discourse nodes interact during structure building have not yet be exhaustively studied
(cf. Section 5.4,7). Empirical evidence for such constraints may come from the Penn Discourse
Treebank (Miltsakaki et al., 2004; Prasad et al., 2004) as well as from theoretical studies.

FIGURE 2 D-LTAG entries for the structural connective although in two
configurations (Forbes-Riley et al., 2006)

576

Computational Linguistics Volume 29, Number 4

Dc

DcDc

α:so

so

Figure 9
Initial tree for coordinate conjunction so.

Dc

Dc Dc

∗ .

Dc

Dc Dc

∗ and ∗

S

S
then

(a) (b) (c)

β: punct1 β: and
β: then

Figure 10
Auxiliary trees for basic elaboration. These particular trees are anchored by (a) the
punctuation mark “period” and (b) and. The symbol ∗ indicates the foot node of the auxiliary
tree, which has the same label as its root. (c) Auxiliary tree for the discourse adverbial then.

β: punct1

β: punct1
3

τ2

* .

T1

T2
T1 T2

.

τ1
0

Figure 11
TAG derivation of example (64).

First, auxiliary trees anchored by punctuation (e.g., period, comma, semicolon.) (Fig-
ure 10a) or by simple coordination (Figure 10b) are used to provide further description
of a situation or of one or more entities (objects, events, situations, states, etc.) within
the situation.18 The additional information is conveyed by the discourse clause that fills
its substitution site. Such auxiliary trees are used in the derivation of simple discourses
such as

(64) a. John went to the zoo.
b. He took his cell phone with him.

Figure 11 shows the DLTAG derivation of example (64), starting from LTAG deriva-
tions of the individual sentences.19 To the left of the horizontal arrow are the elemen-
tary trees to be combined: T1 stands for the LTAG tree for clause (64a), T2 for clause

18 The latter use of an auxiliary tree is related to dominant topic chaining in Scha and Polanyi (1988) and
entity chains in Knott et al. (2001).

19 We comment on left-to-right incremental construction of DLTAG structures in parallel with
sentence-level LTAG structures at the end of Section 5.2.

FIGURE 3 LTAG syntactic
entry for then (Webber et al.,

2003)

Computing Discourse Semantics 7

optional continuation that all adverbials make. But since discourse adverbials
retrieve only one of their arguments structurally (from the discourse unit at
the foot of the adjunction site D V �), D-LTAG must account for where the
other argument comes from. Elsewhere we have argued (Webber et al., 2003)
that it is provided anaphorically.

D W[[\\
D W]� then

D W[[\\
then D W]�

Figure 6. D-LTAG Auxiliary Trees for Discourse Adverbials

This distinction between structural and anaphoric connectives in D-LTAG
is based on considerations of computational economy and behavioral evi-
dence from cases of multiple connectives (Webber et al., 1999b). In (8),
because encodes a causal relation between the event of Sally raising ire and
Sally enjoying cheeseburgers, while nevertheless encodes a violated expecta-
tion relation between Sally enjoying cheeseburgers and Sally subscribing to
the Vegetarian Times (Creswell et al., 2002).

(8) a. Sally subscribes to Vegetarian Times.
b. Lately, she’s raised the ire of her vegan friends
c. because she nevertheless enjoys the occasional bacon cheeseburger.

To model both because and nevertheless as structural connectives would
create a directed acyclic graph with crossing dependencies, which goes be-
yond the computational power of LTAG and creates a completely uncon-
strained model of discourse structure (Webber et al., 2003). However, inves-
tigations into the behavior of discourse connectives reveal that while sub-
ordinating and coordinating conjunctions are constrained to take adjacent
discourse segments of like syntactic type as their arguments, discourse adver-
bials seem to share many properties with anaphora. For example, discourse
adverbials can (like NP anaphora) take their prior argument intra-sententially
as in (9), where embedded nevertheless relates the interpretation of the matrix
clause to the interpretation of the relative clause (Webber et al., 2003).

(9) Many people who have developed network software have nevertheless
never gotten very rich. (i.e. despite having developed network software)

Another feature that discourse adverbials share with anaphoric NPs is that
they can access inferred entities as well as ones introduced explicitly. For
example, in (10a) the discourse adverbial otherwise can access the inferred
condition of if the light is not red. This material is not available to struc-
tural connectives: that is, or in (10b) can only access what is to its left – the
consequent clause (stop) or the antecedent–consequent pair.

FIGURE 4 D-LTAG entries for the
discourse adverbial then

(Forbes-Riley et al., 2006)

tary trees are then combined via the LTAG operations of substitution
and adjunction, building the discourse into a derived tree that indi-
cates the discourse structure. One benefit of lexicalization is that each
discourse connective can specify in its entry whether its discourse unit
arguments (Du) are found structurally or anaphorically. For structural
connectives, the lexical entry contains an elementary tree specifying the
position of the structural connective relative to its adjacent clauses (i.e.
prior to, between or after both clausal discourse units) as in Figure 2.
For discourse adverbials, as in Figure 4, the lexical entry contains an
auxiliary tree specifying its position relative to the host clause, leaving
the anaphoric connection to be resolved in the semantic interpretation.

As mentioned earlier, D-LTAG is part of a dual grammar approach.
Computing Discourse Semantics 9

D W` ` ` ` ` `aaaaaa
D W� � ����

On the one hand D W � D W� � ����
On the other hand D W �

Figure 7. D-LTAG Initial Tree for Parallel Adverbial Constructions

where the other argument is found. Data from the annotated corpus that will
comprise the Penn Discourse Treebank(Miltsakaki et al., 2004; Prasad et al.,
2004) will help answer this question.

We conclude this section by making clear our assumptions about dis-
course structure. While we assume that discourse is primarily tree-structured,
there are a few simple exceptions that require simple DAGs (directed acyclic
graphs). First, as we note in (Webber et al., 2003), we must allow for examples
such as (13) from Bateman (1999):
(13) . . . (vi) The first to do that were the German jewelers, (vii) in particular

Klaus Burie. (viii) And Morris followed very quickly after, (ix) using a
lacquetry technique to make the brooch, (x) and using acrylics, (xi) and
exploring the use of colour, (xii) and colour is another thing that was
new at that time . . .

Bateman analyzes this example as containing a transitional clause (here,
clause viii) that stands in one relationship (here succession, aka sequence)
to the clause preceding it (here, clause vi) and another relationship (here,
manner) to the clause following it (here, clause ix). The result illustrated in
Figure 8 (1) is a simple DAG in which a node has more than one parent.

(ix)(vi)

succession manner

(viii) a b c

elaboration

elaboration

(1) (2)
Figure 8. Simple multi-parent structure for (1) “transitional” clause, (2) clause with indepen-
dent post-modifiers

Second, we may want to allow for a discourse structure that corresponds
in clause-level syntax to a head with independent post-modifiers, as in (14).
In this case, both post-modifiers (b) and (c) relate as independent elaborations
of the main clause (a), as illustrated in Figure 8 (2).
(14) a. John loves Barolo.

b. He first tasted it in 1992.
c. According to Hugh Johnson, it’s one of Italy’s supreme reds.

FIGURE 5 D-LTAG initial tree for the parallel
contrastive construction (Forbes-Riley et al., 2006)

Generating with Discourse Combinatory Categorial Grammar / 7

In this dual grammar approach, discourse connectives are defined by
an LTAG with their sentential scope (e.g. then in Figure 3 is defined
using sentence categories), and then redefined by a D-LTAG for their
discourse scope (e.g. then in Figure 4 is defined using discourse units).
The effect of D-LTAG’s redefinition of discourse connectives is magni-
fied in the case of paired discourse connectives. To illustrate, consider
the paired connectives on the one hand and on the other hand. In a sen-
tential LTAG, each of the paired connectives is defined as an idiomatic
prepositional phrase that anchors an auxiliary tree. For example, in (2),
the paired connectives separately adjoin to (and so have scope over)
their respective main clauses (i.e. on the one hand adjoins to Bienv-
enue has decent decor and on the other hand adjoins to Sonia Rose has
very good decor). In contrast, in the D-LTAG, both phrases anchor the
same initial tree (as in Figure 5), indicating that both main clauses are
within the same domain of locality of the contrast relation indicated
by the paired anchoring connectives (Webber, 2004).

(2) On the one hand, Bienvenue has decent decor. On the other
hand, Sonia Rose has very good decor.

Although D-LTAG successfully expands the semantic scope of dis-
course connectives beyond their sentential scope, the dual grammar
approach adds complexity to processing. For example, since D-LTAG
considers clauses as atoms, a clause-medial discourse connective (e.g.
adverbs like however) must be moved to the initial position of its host
clause in order for D-LTAG to process it, and its arguments. Thus,
some intermediate processing between the sentential LTAG and D-
LTAG stages are required for the two grammars to work together. The
complex nature of the intermediate processing (whose exact details are
not important for present purposes) is illustrated in the D-LTAG sys-
tem architecture in Figure 6. Note that with this architecture, only the
interpretation direction is considered, and only handling of single-best
parses.

While our article focuses on discourse generation, it is worth noting
that the existence of ambiguous connectives may also pose a challenge
for interpretation under the dual grammar approach. As is well known
(see Hirschberg and Litman, 1993, for example), some potential connec-
tives, such as now, also have sentential uses, and thus may not always
be used in their discourse connective sense. For example, in (3a), now
is used as a temporal adverb at the sentential level, whereas in (3b),
now is used as a discourse particle to introduce a different topic at
the discourse level. Similarly, in (4a), still is used as a temporal ad-
verb meaning continuing up to the relevant time, while in (4b), still is

8 / LiLT volume 4, issue 1 September 2010

�	������� ����	�� �	�� ����)

#!����� ���! �!����-$ 0
����� �� ���� ���� �- ��� �
��
����/ �/+
������ �(� ��� �1� "!����� ������ �� ��!���� ���� �� ��&!���� ��"
�� �
��>������
� �!��
� �� ��� ���$"

&� � ���� ���
��'���� ��� ��'�����������

7� ���� �� ��
� �� ��� ����
!� ������� ������������
�
" � ���
!���
������# �-���� �����
� � ��/� ���;�� %���+��.
����# 9������ "
�
���
!���$:��
!��� ���! �!�� �� ������� �� ��
 ������
" ������#$ 7� ���
>��� ���� ��� ������ �� �� ��� ���
!��� ��� ������ ������� ���
!���
������# �� �
�� �� ��� ��
�� ����$ ����
!� �
���# ��#��
" ��� ��- �����

" ��� ���
�-
" �� 8%�9 "
� ���
!��� ���� ��
 ���� ������������
�
� ������ �
���������� ������> ���
�
��� � ���#�� ����
" ������#
���� ����- �� �����
" ��� ������# ���� ��� ��� � ��&!�������� ����
�
!�� ���!�� "�
� !���# �
�� ��� ������ �+����� ��� ��� ���
!���+�����
#������ ��
� �$

Tree

Extractor

Tree
Mapper

Discourse Input

Generation

and

Tree Selection

Clausal

Derivations

Tree Database

Clausal Tree

LEM

Derivation Structure

for

Discourse

Representations

LEM

Input Discourse

(Sentence Parsing) (Discourse Parsing)

"���
� �/ .�"���; <����
 .����	��	��

	�#!�� 3 ��
�� ���
������ �� ���� �!��
" ��� �-����$ %�� ���!�
���
!��� �� �!������� �
 ��� ��� (����� ��� � ������ �� � ������ �
�� ��� ���
!��� ���� ��"���� � �
 ��� ������ � #������$ %��
!��!�
��������
�� �
�� ��������
� �� � "
� �� �
" ��� ������ ��� ��� ����
�!������� �
 ��� ����)����
��� ��� � �/��� �� ��� ���� ���
!���

�����!��� !���� "�
� �� � ������ � ��������
�$ %�� ���� ���
!���
!����
�����!�� ��� ���������- ����� ��/� ���;�� �- ���
!���
��� +
����� �� ��� ������ �+����� #������ ��� ��� ��������
� ���� ��������
���! �!��� ���
 ����� ���� ��� ��!��� !����$# 7� ��� ��/� ���� ���
������ �+����� ���������- ����� �� �
��� �- ���
��� ����� ��� ������
�- ��� ���� *�''�� �
 �����
�����
����# ���������- ����� �� ���

���������	
�������	 ����	 ���

FIGURE 6 D-LTAG parsing system architecture indicating a two pass
parsing module, with complex intermediate processing between sentence

processing and discourse processing (Forbes et al., 2003)

used a discourse connective whose meaning is much like nonetheless or
nevertheless.5 Consequently, for interpretation under the dual grammar
approach, some mechanism must be devised to determine which is the
operative grammar for handling words with such ambiguities. (Lan-
guage generation does not require such a mechanism, since it begins
from an unambiguous semantic representation.)

(3) a. Sonia Rose always has good food. Now we might be able to
get a table.

b. No one is suggesting we skip lunch. Now we all love good
food, so let’s go eat at Sonia Rose.

(4) a. Sonia Rose always has good food. However, it might still be
too busy to get a table now.

b. Sonia Rose isn’t exactly known for its excellent food quality.
However, it might still be our best bet for lunch.

By employing a single grammar, DCCG avoids both of these issues.
It eliminates the need for a mapping interface between two grammars
and simplifies the treatment of discourse connective ambiguity, since
it becomes a “normal” ambiguity that can be resolved using typical
single grammar dynamic programming and disambiguation techniques,

5We thank one of the reviewers for suggesting a similar example.

Generating with Discourse Combinatory Categorial Grammar / 9

rather than one spanning two grammars and thus requiring a special
mechanism.

3 Combinatory Categorial Grammar (CCG)

Combinatory Categorial Grammar (CCG; Steedman, 2000, Steedman
and Baldridge, 2009) belongs to the family of categorial grammars that
take a compositional approach to both syntactic and semantic analysis.
It is a unification-based grammar formalism consisting of atomic and
functional (complex) categories, and a small set of rules for combining
these categories in derivations. As a lexicalized grammar, much of the
combinatory information of a language resides in the lexical entries for
the words in the language.

CCG also provides a transparent interface to compositional seman-
tics, which is built in parallel with a syntactic derivation. In this section,
we will confine our discussion of CCG to syntax, leaving semantics to
be discussed in Section 4.

In CCG, an atomic category consists of a single symbol (e.g. s, n,
np), which can be the complete category of a lexical entry, such as
np for the restaurant name Bienvenue in (5a) or n for decor in (5b).
In addition, atomic categories can be further specified by the use of
features, such as person, number, voice, tense, etc. For example, in (5b)
decor is instantiated with the value mass for the feature num, since it
is a mass noun.6

(5) a. Bienvenue ` np

b. decor ` nmass

c. decent ` n〈2〉/�n〈2〉
d. has ` (s\npnom)/npacc

Functional categories are formed from atomic categories, creating a
complex category that specifies its combinatory potential. Functional
categories are typically of the form α/iβ or α\iβ, where α and β are
categories that may themselves be either atomic or functional, and the
subscripts on the slashes represent slash modalities, to be explained
below. For example, in (5c), two atomic categories (n) are used to form
the functional category n/�n as the syntactic entry for decent, whereas
in (5d), the functional category for has (as a main verb) is made up
of another functional category s\npnom and the atomic category npacc,
where the leftward NP has nominative case and the rightward NP has
accusative case. Note that atomic categories may be co-indexed for

6By convention, the feature-value pair on a category is indicated by the value
alone, when the feature name is evident from the value.

10 / LiLT volume 4, issue 1 September 2010

unification purposes, and thus the fully specified category for decent,
n〈2〉/�n〈2〉, indicates that the features on the argument and result cate-
gories should be unified.

CCG employs a result-first notation, and thus in functional cate-
gories, β specifies the argument of the function while α specifies the
result. The direction of the slash indicates the direction in which the
argument β is sought: the leftward leaning slash (\) indicates that the
argument is sought to the left of the functor, while the rightward leaning
slash (/) indicates that the argument is sought to the right of functor.
For example, in the category for has, (s\np)/np, α corresponds to s\np,
β corresponds to np and the slash indicates that β is sought to the
right of the functor. Left associativity is assumed, and so (s\np)/np is
equivalent to s\np/np.

Once categories are defined for all the words in the lexicon, they
can be combined to form larger phrases via the CCG combinators. The
most commonly used combinators are forward (>) and backward (<)
functional application, as defined in (6) below. The subscripts located
on the slashes in the combinatory rules indicate the use of modalities
in CCG (Baldridge, 2002, Baldridge and Kruijff, 2003, Steedman and
Baldridge, 2009). These modes are specified in the lexical entry of a
word and are used to restrict the application of the combinatory rules,
thereby avoiding the overgeneration of incorrect derivations. There ex-
ist four modalities in the set M = {?,×, �, ·}, and they restrict the
application of the combinatory rules as indicated in (7)-(10) below.
Note that the application-only slash modality (?) is only compatible
with the application rules in (6), and thus constrains sub-derivations
involving application-only slashes to be context-free.

(6) Functional Application

a. X/iY Y ⇒ X (for i ∈M) (>)

b. Y X\iY ⇒ X (for i ∈M) (<)

In addition to functional application, CCG has three additional types
of combinatory rules, based on the type raising (T), composition (B),
and substitution (S) combinators. As with functional application, these
rules are applied in a specified direction and most have both a forward
and backward version that is employed in analyzing English. Using
these combinators, most of the “non-standard” constituents that are
hallmarks of CCG (e.g. object-relative clauses) can be built in a manner
consistent with the rest of the grammar. Note that with the composition
and substitution rules, the modality constraints apply to the modality
of the principal functor’s slash (i), while the modality of the secondary
functor’s slash (j) is unified into the result category’s slash.

Generating with Discourse Combinatory Categorial Grammar / 11

(7) Type Raising

a. X ⇒T Y/j (Y\j X) (> T)

b. X ⇒T Y\j (Y/j X) (< T)

(8) Harmonic Composition

a. X/iY Y/j Z ⇒B X/j Z (for i ∈ {�, ·}) (> B)

b. Y\j Z X\iY ⇒B X\j Z (for i ∈ {�, ·}) (< B)

(9) Crossed Composition

a. X/iY Y\j Z ⇒B× X\j Z (for i ∈ {×, ·}) (> B×)

b. Y/j Z X\iY ⇒B× X/j Z (for i ∈ {×, ·}) (< B×)

(10) Backward Crossed Substitution

a. Y/j Z (X\iY)/j Z ⇒S X/j Z (for i ∈ {×, ·}) (< S×)

The combinatory possibilities of the rules in (6)-(10) are further re-
stricted by the use of features. Two categories undergoing combination
are also subject to feature unification. If the argument category (β)
of the functional category and the input category (to the functional
category) have incompatible values instantiated for a given feature, the
functional and input categories are prevented from combining. Other-
wise, the features of both categories are unified.

To illustrate feature unification and its effect on category combina-
tion, we can combine decent (5c) and decor (5b) using forward func-
tional application. Since the argument of the functional category for
decent (n〈2〉/�n〈2〉) is underspecified for all noun features, it can com-
bine with any noun to the right. When it combines with decor, a noun
that has a specified num (number) value of mass, it unifies the feature
values of both n categories (the complex category’s argument category
and the input category of decor). Furthermore, as noted earlier, the
subscripted indices on both n〈2〉 categories in the functor category in-
dicates that the result category inherits all the feature values of the
argument category. Thus, after unification, the resulting n category for
the phrase decent decor inherits the feature value mass for its num
feature, as in (11).

(11) decent decor ` nmass

Lastly, in addition to the core combinatory rules, CCG allows for a
small number of unary type-changing rules (Hockenmaier and Steed-
man, 2002, 2007). These rules can be thought of as zero morphemes,
and like morphemes (but unlike type-raising rules), they may add their
own semantics. For instance, the type-changing rule in (12) indicates

12 / LiLT volume 4, issue 1 September 2010

Bienvenue has decent decor

np s\npnom/npacc n<2>/�n<2> nmass
>nmass

TCnpmass
>

s\npnom
<s

FIGURE 7 CCG derivation of Bienvenue has decent decor

that mass nouns can be promoted to the np level without requiring an
overt determiner.

(12) nmass ⇒ npmass

Given these combinatory rules and the lexical entries in (5), we can
derive the rest of the sentence, Bienvenue has decent decor. A step-by-
step derivation, continuing from decent decor, is given in (13), and is
shown pictorially in Figure 7.

(13) a. decent decor ` npmass

b. has decent decor ` s\npnom

c. Bienvenue has decent decor ` s

4 Hybrid Logic Dependency Semantics (HLDS)

The OpenCCG7 library, which provides parsing and realization services
for CCG, employs Hybrid Logic Dependency Semantics (HLDS; Kruijff,
2001, Baldridge and Kruijff, 2002) to represent meanings. HLDS is
closely related to other computationally-oriented semantic representa-
tion frameworks such as Minimal Recursion Semantics (MRS; Copes-
take et al., 2001, 2005) and is well suited to the needs of natural
language generation (White and Baldridge, 2003, White, 2006b). As
DCCG is designed to be used computationally with OpenCCG, we
also adopt HLDS for DCCG semantic representations.

Hybrid logic (Blackburn, 2000) extends modal logic by enabling di-
rect reference to specific states in the model using nominals, a new sort
of basic formula that can explicitly name model states. In addition, a
nominal can be used with the satisfaction operator “@” and a formula
to form a new formula. For example, the formula @i(p ∧ 〈F 〉(j ∧ q))
states that the proposition p, as well as the formula 〈F 〉(j∧q), holds at
the state named by the nominal i. Unpacking the sub-formula, it also

7http://OpenCCG.sourceforge.net/

Generating with Discourse Combinatory Categorial Grammar / 13

@e(have ∧ 〈mood〉decl ∧ 〈tense〉pres ∧
〈Owner〉(b ∧Bienvenue) ∧
〈Possn〉(d ∧ decor ∧ 〈det〉nil ∧

〈Mod〉(t ∧ decent)))

FIGURE 8 The HLDS logical form for “Bienvenue has decent decor.”

states that the state j, where the proposition q holds, is related to the
state i via the modal relation F .

To describe linguistic meaning, Baldridge and Kruijff associate each
semantic head with a nominal that identifies its discourse referent.
Heads are connected to their dependents (which are associated with
their own nominal) via dependency relations (characterized as modal
relations). For example, the HLDS representation for the sentence Bi-
envenue has decent decor is shown in Figure 8.

In this example, the nominal e identifies the discourse referent for
the having eventuality, which holds in the present and has a mood of
declarative (decl), since it is a statement.8 It is related to b, the referent
for Bienvenue (a restaurant name) via the modal relation 〈Owner〉,
and to d, the non-definite referent for decor, via the modal relation
〈Possn〉 (Possession). Lastly, referent d is in turn related to t, the
referent for decent, via the modal relation 〈Mod〉 (Modifier).

As Blackburn (2000) notes, attribute-value matrices (AVMs), which
are more familiar in computational linguistics, are notational variants
of hybrid modal logic. Semantically, HLDS representations are descrip-
tions of semantic dependency graphs. White (2006b) shows how these
graphs can be translated into the Discourse Representation Structures
of Discourse Representation Theory (Kamp and Reyle, 1993), thereby
providing the intended natural language meaning. HLDS representa-
tions can be given either as a hierarchical expression, as in Figure 8, or
in an equivalent flat form, as a conjunction of elementary predications.
The flat form enables a monotonic approach to semantic composition as
simple conjunction, much as in MRS, which guarantees that semantic
inputs can be cleanly decomposed during generation. (For readability,
we will only show HLDS representations in hierarchical form.)

During interpretation, logical forms (LFs) are built using unification
of syntactic indices and corresponding semantic nominals. Each atomic
category (including those in complex categories) is assigned an index
variable, via a distinguished index feature. These indices are also as-
sociated with corresponding nominals in the semantic representation.

8The semantic feature 〈tense〉pres is meant to stand in for the range of more
specific ways that the semantics of the present tense morpheme could be spelled
out in order to support inference.

14 / LiLT volume 4, issue 1 September 2010

When lexical categories are combined, the application of combinatory
rules causes the appropriate nominals to be coindexed, via unification
on the categories (White, 2006b).

For example, to build the phrase decent decor, we start with the
lexical entries for both words, shown in (14). In the definition for decor,
the index d on the category n is associated with the nominal d in the
HLDS representation. For decent, both atomic n categories bear an
index x, which corresponds to the nominal variable x in the HLDS
representation.

(14) a. Bienvenue ` npb : @b(Bienvenue)

b. decor ` nd,mass : @d(decor)

c. decent ` nx/�nx : @x(〈Mod〉(t ∧ decent))

d. has ` se\npx ,nom/npy,acc :
@e(have ∧ 〈tense〉pres ∧ 〈Owner〉x ∧ 〈Possn〉y)

When decent and decor combine, the index d from decor unifies
(via feature unification) with the index variable x on the argument
category of decent. This in turn unifies with the result category’s index,
so that the resulting category of decent decor is nd . On the semantic
side, the nominal variable x for decent is coindexed with the newly
unified variable d, effectively adding the remaining formulas for decent
to the semantics for decor. The result is (15):

(15) decent decor ` nd,mass : @d(decor ∧ 〈Mod〉(t ∧ decent))

As mentioned in Section 3, mass nouns can be promoted to the np
category via a type-changing rule (12), which adds additional seman-
tics. The full rule including the semantics is found in (16):

(16) nx ,mass ⇒ npx ,mass : @x(〈det〉nil)

When (16) is applied to (15), and the appropriate indices are unified
and coindexed, the result is (17):

(17) decent decor ` npd,mass : @d(decor ∧ 〈det〉nil ∧ 〈Mod〉(t ∧
decent))

Using the remaining lexical entries in (14), and the same unifica-
tion/coindexation principles as above, the rest of the sentence can be
derived. When has (14d) is applied to decent decor (17), the result is
(18). Finally, (18) is applied to Bienvenue (14a), resulting in (19). Note
that the semantic representation in (19) is essentially the same as the
one in Figure 8, missing only the declarative mood semantic feature,
which is supplied by the full stop.

Generating with Discourse Combinatory Categorial Grammar / 15

(18) has decent decor ` se\npx :
@e(have∧〈tense〉pres∧〈Owner〉x∧〈Possn〉(d∧decor ∧
〈det〉nil ∧ 〈Mod〉(t ∧ decent)))

(19) Bienvenue has decent decor ` se :
@e(have ∧ 〈tense〉pres ∧ 〈Owner〉(b ∧Bienvenue) ∧
〈Possn〉(d ∧ decor ∧ 〈det〉nil ∧ 〈Mod〉(t ∧ decent)))

5 Discourse Combinatory Categorial Grammar

In this section, we show how Discourse Combinatory Categorial Gram-
mar (DCCG) extends Combinatory Categorial Grammar (CCG) to
model both discourse and sentence structure in a single grammar. In
Section 5.1, we illustrate how intrasentential structural connectives are
treated using standard CCG categories, then discuss how extending this
approach across sentences to handle intersentential connectives leads to
an undesirable proliferation of categorial ambiguity. In Section 5.2, we
introduce cue threading, a tightly constrained technique for extend-
ing the scope of structural discourse connectives across sentences that
works with standard CCG sentential categories and avoids the prob-
lem of proliferating categorial ambiguity. In Section 5.3, we show how
treating discourse adverbials as anaphoric makes them straightforward
to handle in the grammar, irrespective of whether their dependencies
form a tree, as well as how this treatment allows multiple connectives
to appear in a clause, as long as no more than one connective is struc-
tural. We conclude the section with an example illustrating how the
approach allows for paraphrases that cross sentence boundaries.

5.1 Standard Categories and Proliferating Ambiguity

To illustrate how standard CCG categories can be used for discourse
connectives within sentences, consider the following categories for ex-
pressing contrast with but and while:

(20) a. {while, but } ` se\∗se1 \∗punc,/�se2 :
@e(contrast-rel ∧ 〈Arg1〉e1 ∧ 〈Arg2〉e2)

b. while ` se/∗se2 /∗punc,/�se1 :
@e(contrast-rel ∧ 〈Arg1〉e1 ∧ 〈Arg2〉e2)

The first category in (20) is for medial while or but, as in Bienvenue has
decent decor, but Sonia Rose has very good decor. The category looks
for the second argument to the contrast relation (headed by e2) to the
right, then a comma to the left, then the first argument to the contrast
relation (headed by e1) to the left, returning a full clause (headed by e)
expressing the contrast relation. The second category in (20) is for an

16 / LiLT volume 4, issue 1 September 2010

@c1 (contrast-rel ∧ 〈turn〉complete ∧
〈Arg1〉(h1 ∧ have ∧ 〈mood〉decl ∧

〈Owner〉(b1 ∧Bienvenue) ∧
〈Possn〉(d1 ∧ decor ∧ 〈det〉nil ∧

〈Mod〉(e1 ∧ decent))) ∧
〈Arg2〉(h2 ∧ have ∧ 〈mood〉decl ∧

〈Owner〉(s1 ∧ Sonia Rose) ∧
〈Possn〉(d2 ∧ decor ∧ 〈det〉nil ∧

〈Mod〉(g1 ∧ very good))))

FIGURE 9 Logical form of Bienvenue has decent decor. However, Sonia
Rose has very good decor.

initial connective, and is only applicable to while, as in While Bienvenue
has decent decor, Sonia Rose has very good decor.

To account for the full stop, the following category introduces a
sentence mood feature:

(21) . ` tse\∗se : @e(〈Mood〉decl)

Typically, the full stop maps a clause to a complete sentence. In (21),
we have introduced the category ts, for text segment, as the result,
where a text segment is one or more complete sentences; having such
a category will prove useful when we look at connectives combining
multiple sentences.

At this point, we are ready to examine what happens when one
tries to employ standard CCG categories for structural connectives that
cross sentence boundaries. To illustrate, consider the abbreviated9 log-
ical form in Figure 9 for (22).

(22) Bienvenue has decent decor. However, Sonia Rose has very good
decor.

Since the LF in Figure 9 contains a declarative mood feature on each
clause specification, each clause must be realized as a complete sentence
(or minimal text segment), and thus the intrasentential categories in
(20) do not apply (or at least, will not yield complete realizations). To
realize (22), we will instead need a category for however that spans
sentences, as indicated in Figure 10. The requisite category follows:

9LFs in this paper are shown with only those semantic features that pertain
to discourse structure, such as 〈mood〉 and 〈turn〉 (to be discussed in the next
subsection). Other semantic features (e.g. 〈tense〉, 〈number〉, 〈gender〉, etc.) are
present in the LFs and corresponding DCCG grammar used by OpenCCG, but
omitted here due to space.

Generating with Discourse Combinatory Categorial Grammar / 17

A . however , B .

s ts\∗s ... punc, s ts\∗s
< >

ts ts\∗ts
<

ts

FIGURE 10 Schematic derivation with sentence-initial however.

ot1h , A . otoh , B .

... punc, s ts\∗s ... punc, s ts\∗s
> >

ts/∗tsotoh tsotoh
>

ts

FIGURE 11 Schematic derivation with on the one hand . . . on the other
hand.

(23) however ` tse\∗tse1 /∗(tse2 \se2)/∗se2 /∗punc, :

@e(contrast-rel ∧ 〈Arg1〉e1 ∧ 〈Arg2〉e2)

In (23), however first looks to the right for a comma, then a clause
expressing the second argument of the contrast relation, and then the
full-stop category; at this point, it looks to the left for a text segment
expressing the first argument of the contrast relation, finally returning
a text segment expressing the contrast relation itself.

Although this category succeeds in making the desired derivation
possible, it has an odd asymmetry, in that the discourse unit for 〈Arg1〉
can be a text segment, while the discourse unit for 〈Arg2〉 can only be
a clause. We will return to this asymmetry below, after first discussing
how paired connectives can be handled.

To express the LF in Figure 9, the paired connectives on the one
hand . . . on the other hand can also be employed, as in (24).

(24) On the one hand, Bienvenue has decent decor. On the other
hand, Sonia Rose has very good decor.

The target derivation appears schematically in Figure 11; the requisite
categories for the connectives follow in (25). Here, on the other hand
(abbreviated as otoh) is treated as semantically null, similarly to verb
particles and case-marking prepositions: it serves to mark the text seg-
ment it appears in as one that includes this phrase, using a cue feature
(i.e., cue=otoh). Such a category is selected for by on the one hand
(abbreviated ot1h), whose category introduces the contrast relation
expressed by the two connectives. Note that on the other hand is often
found by itself, without being preceded by on the one hand ; to allow

18 / LiLT volume 4, issue 1 September 2010

ot1h, A. however, B. otoh, C. however, D.

. . . ts\∗ts . . . ts\∗ts
> >

ts/∗tsotoh tsotoh
>

ts

FIGURE 12 Schematic derivation of nested contrasts.

for such solitary uses of on the other hand, it must also be assigned the
same category as however in (23).

(25) a. on the one hand ` tse/∗tse2 ,otoh/∗(tse1 \se1)/∗se1 /∗punc, :

@e(contrast-rel ∧ 〈Arg1〉e1 ∧ 〈Arg2〉e2)

b. on the other hand ` tse,otoh/∗(tse\se)/∗se/∗punc,

The category for on the one hand in (25) is like the one for how-
ever in (23) insofar as it allows one of the discourse unit arguments
of the contrast relation (here, 〈Arg2〉) to be expressed by a po-
tentially extended text segment, while the other (here, 〈Arg1〉) must
be expressed by a single clause. With the category given for on the
other hand, it turns out that the 〈Arg2〉 discourse unit must also be
expressed by a single clause. However, these limitations are problem-
atic, as paired connectives are often used to express relations across
extended discourses. To illustrate, (26) shows an example of nested
contrast relations; schematically, the relations among the clauses are
contrast-rel(contrast-rel(A,B), contrast-rel(C,D)).

(26) a. On the one hand, Bienvenue is a mediocre restaurant.

b. However, it has excellent service.

c. On the other hand, Sonia Rose is a good restaurant.

d. However, it has poor decor.

The target derivation for (26) appears in Figure 12. To allow on the
one/other hand to extend their scope beyond a single clause, they can
be given the categories in (27), which have been lifted over a modifying
ts\ts category.

(27) a. ot1h ` tse/∗tse2 ,otoh/∗(tse1 \tsea)/∗(tsea\sea)/∗sea/∗punc, :

@e(contrast-rel ∧ 〈Arg1〉e1 ∧ 〈Arg2〉e2)

b. otoh ` tse,otoh/∗(tse\tsec)/∗(tsec\sec)/∗sec/∗punc,

While these categories suffice for this example — and suggest that there
is no problem in principle with developing an account of structural con-
nectives using standard CCG categories — the need for multiple lexical

Generating with Discourse Combinatory Categorial Grammar / 19

categories for these connectives appears problematic; and indeed, when
one returns to the categories necessary for however, it becomes apparent
that there is an undesirable proliferation of lexical category ambiguity.
First, we may note that however must have a lifted category to like-
wise extend the scope of its second argument beyond a sentence. More
troubling though is the category for medial however :

(28) however ` tse\∗tse1 /∗(tse2 \se2)\np/�(se2\np)\∗punc,/∗punc, :

@e(contrast-rel ∧ 〈Arg1〉e1 ∧ 〈Arg2〉e2)

This category is like the standard one in that it first seeks the surround-
ing commas, then a verb phrase (s\np) to the right; but, rather than
yielding a verb phrase at this point, the category looks for the subject
NP to the left and then yields a category in which s has been replaced
by ts\∗ts/∗(ts\s). Accordingly, additional categories will need to be as-
signed to many other words — for example, words heading clause-initial
modifiers, lexically type-raised determiners, auxiliary verbs or negation
markers,10 etc. — in order to interact properly with this result cat-
egory. For this reason, we will now develop an alternative approach,
using cue threading, that makes it unnecessary to proliferate category
assignments in this way.

5.2 Structural Connectives and Cue Threading

Cue threading is reminiscent of Power et al.’s (1999) cue storage tech-
nique, shown in Figure 13. With cue storage, discourse connectives sig-
naling rhetorical relations in the upper part of an RST tree percolate
down to leaf nodes, which contain propositions expressed as clauses. As
a cue store is a stack, multiple connectives can be realized in a single
clause, as the example illustrates. Cue threading is similar to cue stor-
age insofar as connectives can be thought of as percolating from where
they take scope semantically down to the clause in which they appear
during realization (in derivations, connectives actually percolate in the
upwards direction, as would be expected in the parsing case). However,
cue threading is more constrained than cue storage since it only makes
use of a single cue feature, rather than a stack. To handle Power et
al.’s example with cue threading, since would first connect the basic
clauses, then but would connect the first sentence with the complex

10In sentences where however appears after auxiliary verbs or negation markers
but still before the verb stem, the CCG category in (28) for medial however is suf-
ficient to enable however to appear in these syntactic positions, since this category
allows however to combine with categories headed by verbs in finite or bare form.
The main issue presented by words such as auxiliary verbs or negation is that of
proliferating categories for these words.

20 / LiLT volume 4, issue 1 September 2010

Elixir has no sig-
nificant side effects.
But since the medicine
is for you, never
give Elixir to other
patients.

RELATION concession

DISC-MARKER but

LEVEL sentence

NUMBER single

POSITION 1

CUE-STORE []

p1 = "Elixir has no significant side-effects"

p2 = "the medicine is for you"

p3 = "never give Elixir to other patients"

NUCLEUS

RELATION justify

DISC-MARKER since

LEVEL phrase

NUMBER multiple

POSITION 2

CUE-STORE [but]

SATELLITE

PROPOSITION p3 PROPOSITION p2

PROPOSITION p1

LEVEL phrase

NUMBER single

POSITION 1

CUE-STORE []

LEVEL phrase

NUMBER single

POSITION 2

CUE-STORE []

LEVEL phrase

NUMBER single

POSITION 1

CUE-STORE [but since]

NUCLEUS SATELLITE

Figure �� A formal text structure

� If a discourse marker is expressed within a complex unit� it should be attached to the
simple unit that occurs �rst in the text�

� Elixir has no signi�cant side�e�ects� However� since the medicine is for you� never
give Elixir to other patients�

� �Elixir has no signi�cant side�e�ects� Since the medicine is for you� never give Elixir
to other patients� however�

We are not claiming that texts which violate this constraint are ungrammatical� merely
that they are more prone to ambiguity and� therefore� to misinterpretation�

� Related work

Like Danlos �	

�� we treat discourse markers as lexical realisations of certain clusters of
features� and handle clauses� sentences and texts within a uniform framework� This work is
also closely related to that of Webber and Joshi �	

� in that both use features to constrain
the set of discourse markers which can appear in a particular context� and take into account
both syntactic and rhetorical properties of discourse markers� It di�ers from their approach in
that we specify the syntactic options within the feature system� while Webber and Joshi use
LTAG trees which make explicit the syntactic con�gurations available to a given set of discourse
markers�

Grote and Stede �	

� suggest a way of constructing a lexicon of discourse markers� which
contains the appropriate features to allow a generation system to choose amongst them� Their
proposal appears to be completely consistent with the present work� Many of the features they
identify as important are the same as those which we use� and the additional information they

FIGURE 13 A cue store allows multiple connectives (underlined) to
percolate down to a single clause (Power et al., 1999)

clause since the medicine is for you, never give Elixir to other patients,
so that only one structural connective is active at the same time. Later
in this section, we will see how structural connectives may be combined
with discourse adverbials in a single clause; otherwise, structural con-
nectives themselves are constrained to one per clause, which appears
to be largely empirically adequate, based on examples in the literature
(cf. Webber et al., 2003, Webber, 2004).

However, it may be the case that a given discourse argument is not
unique to one particular relation, but rather may be shared between
two relations in a multiparent structure (Webber et al., 2003), as in Di-
nesh et al.’s (2005) example (29), from the Penn Discourse Treebank.
Here the discourse unit ArgZ is not considered part of the discourse
argument ArgY for when, even though it is related to ArgY via the
connective phrase partly because. This creates a non-hierarchical “M”-
shaped discourse structure, as seen in Figure 14, where the same dis-
course unit (ArgY) is used as an argument for two different discourse
relations (synchrony and justification), neither of which are sub-
ordinate to the other. Under this analysis, we would have to modify
our strategy for dealing with intrasentential structural connectives in
this arrangement. We leave this issue for future research.

(29) When [Ms. Evens took her job]ArgX , [several important divi-

Generating with Discourse Combinatory Categorial Grammar / 21

synchrony

qqqqqqq
MMMMMMM justification

qqqqqqq
MMMMMMM

ArgX ArgY ArgZ

FIGURE 14 The multiparent ”M”-shaped discourse structure of (29).

sions that had reported to her predecessor weren’t included]ArgY

partly because [she didn’t wish to be a full administrator]ArgZ .
(Dinesh et al., 2005)

In addition, our DCCG currently focuses on non-attributed text.
Thus any potential problems regarding attributions that lie outside of,
but in between, the structural connective and its arguments, as in (30),
will also be left for future research.11

(30) The current distribution arrangement ends in March 1990,
although Delmed said it will continue to provide some
supplies of the peritoneal dialysis products to National
Medical, the spokeswoman said. (Dinesh et al., 2005)

We turn now to the explication of the cue threading process. To
illustrate cue threading, consider again the logical form in Figure 9.
The cue threading derivation using paired contrastive connectives for
this LF uses standard CCG categories for the words, with the addition
of values for the cue feature. Generalizing the treatment of on the other
hand in the preceding section, the cue feature is used to mark a clause
as containing the structural connective in question. The cue feature
is then threaded through the derivation until the point at which the
semantic relation for the connective is introduced. For example, the
lexical categories for on the one hand and on the other hand are listed
in (31a) and (31b). Both entries are nearly identical, with neither one
directly contributing semantic content. Instead, each entry sets a unique
value of the cue feature: in (31a), cue=ot1h, while in (31b), cue=otoh.
On any category, if the cue is instantiated such that cue=val (where
val is any non-nil value), it indicates an undischarged discourse relation
(i.e. one searching for its other argument). A value of cue=nil, however,
indicates there are no discourse relations waiting to be discharged.

(31) a. on the one hand ` sot1h/�snil/∗punc,

b. on the other hand ` sotoh/�snil/∗punc,

11We thank one of our reviewers for bringing both (29) and (30) to our attention.

22 / LiLT volume 4, issue 1 September 2010

ot1h , Bienvenue has decent decor .

sot1h/�snil/∗punc, punc, snil ts\∗s
>

sot1h/�snil
>sot1h

<
tsot1h

TC
tsnil/∗tsotoh

otoh , Sonia Rose has very good decor .

sotoh/�snil/∗punc, punc, snil ts\∗s
>

sotoh/�snil
>sotoh

<
tsotoh

ot1h, Bienvenue . . . otoh, Sonia Rose . . .

tsnil/∗tsotoh tsotoh
>

tsnil
TC

turnnil

FIGURE 15 A DCCG derivation illustrating the use of cue threading and
type-changing rules

The lexical entry for the full stop in (32) has been updated to pass
along the value of the cue feature, unifying the value of this feature in
the argument and result categories:

(32) . ` tse,CUE\∗se,CUE : @e(〈Mood〉decl)

The derivation involving these paired connectives is shown in Figure 15.
Since the main clause in both sentences consists of standard CCG cat-
egories, it results in a category of snil. The nil value, projected from
the verb, indicates that there is no structural connective waiting to be
discharged. Using the newly defined discourse connective categories, on
the one hand combines first with the neighboring comma, then with the
snil category of Bienvenue has decent decor. Since the complex category
for on the one hand merely changes the cue value of the input category
(from cue=nil to cue=ot1h), it effectively marks the resulting sot1h cat-
egory as containing an undischarged cue. The sentence then combines
with the full stop, which threads the ot1h value of the s category to the
resulting tsot1h category. A similar process occurs using the categories

Generating with Discourse Combinatory Categorial Grammar / 23

and cue features of on the other hand and Sonia Rose has very good
decor, resulting in the category, tsotoh.

Next, the tsot1h from the first sentence is type-changed according to
the rule in (33), so that a text segment bearing a cue value of ot1h looks
to the right for a text segment bearing a cue value of otoh. Furthermore,
this rule adds the semantics that there is a contrast relation between
the arguments denoted by tsot1h and tsotoh.

(33) tse1 ,ot1h ⇒ tse,nil/∗tse2 ,otoh :
@e(contrast-rel ∧ 〈Arg1〉e1 ∧ 〈Arg2〉e2)

When the newly type-changed category tsnil/∗tsotoh combines with a
tsotoh, it produces the category tsnil. The nil value indicates that the con-
nective has been discharged (by finding its other discourse argument),
and ends the threading process begun when the structural connectives
were first combined in the derivation. It also prevents ts from being
type-changed a second time (as the input categories’ cue features no
longer match).

Note that we have chosen to use a rightward looking type change
rule that operates on the ts containing on the one hand, instead of a
leftward looking type change rule that operates on the ts containing
on the other hand. The rightward rule mirrors the forward expectation,
unique to paired connectives, that if the first half of pair is encountered,
marking both the discourse relation and its first argument, then the
text segment cannot be considered complete until the second half of
the pair, along with the second argument of the discourse relation, is
also found.

Lastly, since no further connectives require discharging, the deriva-
tion is completed by type changing the result category tsnil to the top-
level turn category, using the rule in (34). This rule adds a turn com-
pletion feature to the semantics that indicates the derivation of one or
more complete sentences in a coherent discourse, and enforces a state
where no discourse relations are waiting to be discharged.12

(34) tse,nil ⇒ turne,nil : @e(〈Turn〉complete)

One advantage of using a type changing rule such as (33) to seek out
the other half of a paired connective is that we could easily extend (33)
the type changing rule to look for ts categories with cue values other
than simply otoh. This would allow on the one hand to pair with other

12Here we are simply using turn as a convenient way to ensure that no discourse
relations remain undischarged; we leave open the question of how our use of this
term relates to other notions of turn in the discourse literature.

24 / LiLT volume 4, issue 1 September 2010

contrastive connectives such as at the same time or but, both attested
as pairing with on the one hand in the Brown Corpus.13

Further entries for on the one/other hand appear in (35), correspond-
ing to their other possible syntactic positions (i.e. post subject-NP, or
clause-finally), as well as the nearly identical entries in (36) for however.

(35) on the other hand ` sotoh\�snil\∗punc,
on the other hand ` sotoh\np/�(snil\np)/∗punc,\∗punc,

(36) however ` showever/�snil/∗punc,
however ` showever\�snil\∗punc,
however ` showever\np/�(snil\np)/∗punc,\∗punc,

DCCG also contains the type-changing rule in (37) for the more
typical solitary structural contrastive connectives. This rule promotes a
ts category whose cue=contrastive (where {otoh, however} are subtypes
of contrastive and so match) to a complex category searching for a ts
(with any value of cue) to its left.

(37) tse2 ,contrastive ⇒ tse,CUE\∗tse1 ,CUE :
@e(contrast-rel ∧ 〈Arg1〉e1 ∧ 〈Arg2〉e2)

where {otoh, however} are subtypes of contrastive

Rule (37) propagates the cue value from the leftward argument (headed
by e1) to the parent text segment (headed by e), thereby allowing con-
trastive or other rhetorical relations to be nested, as shown in Figure 16.
In particular, note that ot1h, A. however, B. yields a text segment with
an undischarged ot1h cue, as shown in Figure 16, given the way rule
(37) threads the cue value from the first sentence upwards. Interest-
ingly, cue threading also appropriately restricts these nested relations
from being realized by nested paired connectives, as that would result
in some clauses bearing multiple structural connectives, as in (38):

(38) *ot1h, ot1h, A. otoh, B. otoh, ot1h, C. otoh, D.

When each clause combines with the structural connective directly pre-
ceding them, they result in s categories that bear non-nil cue values.
These values then prohibit their host category from combining with
additional structural connectives (as on A & C), preventing the gener-
ation or interpretation of this schema.

13We thank one of our anonymous reviewers for pointing out the existence of
non-canonical paired connectives.

Generating with Discourse Combinatory Categorial Grammar / 25

ot1h, A. however, B. otoh, C. however, D.
tsot1h tshowever tsotoh tshowever

TC TC
tsCUE\∗ tsCUE tsCUE\∗ tsCUE

< <
tsot1h tsotoh

TC
tsnil/∗ tsotoh

>
tsnil

TC
turnnil

FIGURE 16 A DCCG derivation of nested contrast relations

Returning now to the intrasentential conjunctions that express con-
trast, their categories remain the same as in the preceding section, ex-
cept for the addition of the requirement that they combine with clauses
having nil values for the cue feature:

(39) a. {while, but } ` se,nil\∗se1 ,nil\∗punc,/�se2 ,nil :
@e(contrast-rel ∧ 〈Arg1〉e1 ∧ 〈Arg2〉e2)

b. while ` se,nil/∗se2 ,nil/∗punc,/�se1 ,nil :
@e(contrast-rel ∧ 〈Arg1〉e1 ∧ 〈Arg2〉e2)

Since these categories do not need to look outside the sentence to find
both of their discourse arguments, they do not change the cue values
of their result categories.

To conclude this section, we address the question of whether it is a
necessary move to employ unary type-changing rules in order to handle
intersentential discourse connectives in CCG. As noted in the preceding
section, the lexicalized categories for connectives offered therein suggest
that there is no problem in principle with devising a purely lexicalized
approach to discourse connectives; accordingly, the cue threading ap-
proach presented in this section appears to yield grammars with cov-
erage equivalent to purely lexicalized alternatives. Nevertheless, as we
have seen, the purely lexicalized approach leads to a proliferation of lex-
ical category ambiguity, and while lexical rules might be employed to
systematically assign the necessary lexical categories, the cue threading
approach is clearly more economical. Similar considerations led Hock-
enmaier and Steedman (2002, 2007) to make extensive use of type-
changing rules in their broad coverage grammar of English, indicating
that such rules have an important role to play in practical grammars.
Hockenmaier and Steedman further argued that the formal power of
the system is unaffected as long as (i) only a finite number of unary
rules are employed and (ii) the rules are designed so that they cannot
recursively apply to their own output, as is the case here.

26 / LiLT volume 4, issue 1 September 2010

it also has poor decor

np sCUE\np/�(sCUE\np) snil\npnom
>

snil\npnom
<snil

FIGURE 17 A DCCG derivation of a clause including the discourse
adverbial also.

5.3 Discourse Adverbials and Anaphora Resolution

Unlike structural connectives, which find their discourse arguments via
cue threading, discourse adverbials find one argument syntactically,
and the other through anaphora resolution. To illustrate how DCCG
accomplishes this, consider (1) from Section 2, repeated below:

(1) b1: Bienvenue is a mediocre restaurant.

h1: It has poor decor and mediocre food quality.

b3: However, Sonia Rose is a good restaurant.

h2: While it also has poor decor,

h3: it has excellent food quality.

As illustrated by the derivation of the clause for h2 in Figure 17, the pre-
verbal modifier category for also in (40c) below takes a VP category
se,CUE\np as its argument and returns a VP category as its result,
adding an additive relation to the semantics.

(40) a. also ` se,CUE/�se,CUE/∗punc, :
@e(〈Mod〉(a ∧ additive-rel ∧ 〈Arg1〉e1))

b. also ` se,CUE\�se,CUE\∗punc, :
@e(〈Mod〉(a ∧ additive-rel ∧ 〈Arg1〉e1))

c. also ` se,CUE\np/�(se,CUE\np) :
@e(〈Mod〉(a ∧ additive-rel ∧ 〈Arg1〉e1))

Since discourse adverbials such as also do not necessarily find their dis-
course arguments in structurally adjacent text segments, they do not
use cue threading. Instead, the cue value on discourse adverbials is left
underspecfied, as seen in all the lexical entries for also in (40). These
underspecified values then unify with the cue value of the input cat-
egory, threading any undischarged structural connectives through. In
this way, a discourse adverbial and a structural connective can appear
on the same clause (e.g. However, Bienvenue also has good decor).
In our example, the underspecified cue value of the argument cate-
gory in (40c) is unified with the nil cue value from the input category

Generating with Discourse Combinatory Categorial Grammar / 27

(snil\npnom) and then threaded through, resulting in the same category
(snil\npnom). This then allows the subject pronoun it to combine with
the newly formed VP category to form an snil category.

In each of the semantic representations in (40), also establishes an
additive discourse relation between the head of the modified host
clause e and the reference nominal e1, which is not syntactically bound,
and thus must be identified through anaphora resolution. Note that
here, the 〈Mod〉 relation serves as the inverse of the 〈Arg2〉 relation
observed with structural connectives. In generation, the antecedent is
assumed to be already known.

For our example, the entire semantic representation of (1) is pre-
sented in Figure 18. Focusing on lines 19–21 in Figure 18, we can see
that the additive discourse relation (a2) on line 20 links the head of
the host clause h2 on line 19 to its antecedent discourse argument h1 on
line 21, which was specified here for generation. An interesting aspect
to note is that the unlike the arguments of a structurally established
relation (such as contrast on lines 0 or 18) that can be presented in
a tree structure, the antecedent argument of an anaphorically estab-
lished relation (such as additive) lies outside of the additive subtree
and instead resides in a different part of the DLF tree structure. So al-
though h1 is the antecedent argument of the additive relation, only its
reference nominal is specified in the additive relation subtree, while
the rest of its semantics are specified in lines 6–12.

The LF in Figure 18 also includes the evidence relation (lines 1
& 13). The DCCG realizes this relation simply by placing those text
segments in adjacent positions, without the presence of any discourse
connective. This is accomplished by the rule in (41). A similar rule can
also express the infer relation, which is used to relate clauses that
have no other obvious relation to one other.

(41) tsnil ⇒ tsCUE\∗tsCUE :
@e(evidence-rel ∧ 〈Arg1〉e1 ∧ 〈Arg2〉e2)

At this point we may observe that the 〈mood〉 feature has been made
optional in the LF in Figure 18 (lines 18, 19, 25), using the optionality
operator (?) from (White, 2006a). Since the 〈mood〉 feature is intro-
duced by sentence-final punctuation, during realization it has the effect
of indicating where sentence boundaries must appear. Making the fea-
ture optional therefore allows the realizer some flexibility in choosing
where to put sentence breaks. With the DCCG additions shown above,
and once the optionality operators are introduced, the OpenCCG real-
izer generates 660 paraphrases from the LF in Figure 18.

28 / LiLT volume 4, issue 1 September 2010

0 @c1 (contrast-rel ∧ 〈turn〉complete ∧
1 〈Arg1〉(i1 ∧ evidence-rel ∧
2 〈Arg1〉(b1 ∧ be ∧ 〈mood〉decl ∧
3 〈Arg0〉(b2 ∧Bienvenue) ∧
4 〈Pred〉(r1 ∧ restaurant ∧ 〈det〉a ∧
5 〈Mod〉(m1 ∧mediocre))) ∧
6 〈Arg2〉(h1 ∧ have ∧ 〈mood〉decl ∧
7 〈Owner〉(p1 ∧ pro3) ∧
8 〈Possn〉(a1 ∧ and ∧ 〈det〉nil ∧
9 〈Item1〉(d1 ∧ decor ∧
10 〈Mod〉(p2 ∧ poor)) ∧
11 〈Item2〉(f1 ∧ food quality ∧
12 〈Mod〉(m2 ∧mediocre))))) ∧
13 〈Arg2〉(i2 ∧ evidence-rel ∧
14 〈Arg1〉(b3 : ∧be ∧ 〈mood〉decl ∧
15 〈Arg0〉(s1 ∧ Sonia Rose) ∧
16 〈Pred〉(r2 ∧ restaurant ∧ 〈det〉a ∧
17 〈Mod〉(g1 ∧ good))) ∧
18 〈Arg2〉(c2 ∧ contrast-rel ∧ (〈mood〉decl)? ∧
19 〈Arg1〉(h2 ∧ have ∧ (〈mood〉decl)? ∧
20 (〈Mod〉(a2 ∧ additive-rel ∧
21 〈Arg1〉h1) ∧)?
22 〈Owner〉(p3 ∧ pro3) ∧
23 〈Possn〉(d2 ∧ decor ∧ 〈det〉nil ∧
24 〈Mod〉(p4 ∧ poor))) ∧
25 〈Arg2〉(h3 ∧ have ∧ (〈mood〉decl)?

26 〈Owner〉(p5 ∧ pro3) ∧
27 〈Possn〉(f2 ∧ food quality ∧ 〈det〉nil ∧
28 〈Mod〉(e3 ∧ excellent))))))

FIGURE 18 The LF used to generate the paraphrases in Figure19, using the
optionality marker (?) on the 〈mood〉decl feature. It also features an

optional additive relation (lines 19–21).

Generating with Discourse Combinatory Categorial Grammar / 29

[1.000] Bienvenue is a mediocre restaurant . it has poor decor and mediocre
food quality . however , SoniaRose is a good restaurant . while it also has poor
decor , it has excellent food quality .
[1.000] ot1h , Bienvenue is a mediocre restaurant . it has poor decor and mediocre
food quality . otoh , Sonia Rose is a good restaurant . it also has poor decor .
however , it has excellent food quality .
[1.000] Bienvenue is a mediocre restaurant . it has poor decor and mediocre
food quality . otoh , Sonia Rose is a good restaurant . while it also has poor decor
, it has excellent food quality .
[1.000] ot1h , Bienvenue is a mediocre restaurant . it has poor decor and mediocre
food quality . otoh , Sonia Rose is a good restaurant . while it also has poor decor
, it has excellent food quality .
[1.000] Bienvenue is a mediocre restaurant . it has poor decor and mediocre
food quality . otoh , Sonia Rose is a good restaurant . it also has poor decor .
however , it has excellent food quality .
. . .
[0.908] ot1h , Bienvenue is a mediocre restaurant . it has poor decor and mediocre
food quality . otoh , Sonia Rose is a good restaurant . it also has poor decor , but
it has excellent food quality .
. . .
[0.822] Bienvenue is a mediocre restaurant . it has poor decor and mediocre
food quality . however , Sonia Rose is a good restaurant . ot1h , it also has poor
decor . otoh , it has excellent food quality .
. . .
[0.464] Bienvenue , ot1h , is a mediocre restaurant . it has poor decor and mediocre
food quality . Sonia Rose is a good restaurant , otoh . it , ot1h , has poor decor ,
also . it , otoh , has excellent food quality .
[0.464] Bienvenue is a mediocre restaurant , ot1h . it has poor decor and mediocre
food quality . Sonia Rose , otoh , is a good restaurant . it , ot1h , has poor decor ,
also . it has excellent food quality , otoh .
[0.458] Bienvenue , ot1h , is a mediocre restaurant . it has poor decor and mediocre
food quality . Sonia Rose is a good restaurant , otoh . it , ot1h , has poor decor ,
also . it has excellent food quality , otoh .
[0.458] Bienvenue is a mediocre restaurant , ot1h . it has poor decor and mediocre
food quality . Sonia Rose is a good restaurant , otoh . it , ot1h , has poor decor ,
also . it , otoh , has excellent food quality .
[0.451] Bienvenue is a mediocre restaurant , ot1h . it has poor decor and mediocre
food quality . Sonia Rose is a good restaurant , otoh . it , ot1h , has poor decor ,
also . it has excellent food quality , otoh .

FIGURE 19 DCCG Realizations of Figure 18: The Top 5 Best and Worst
paraphrases (first and last 5 paraphrases, respectively), according to

n-gram similarity to the target paraphrases (the first two listed)

30 / LiLT volume 4, issue 1 September 2010

Figure 19 contains a sample of the generated paraphrases. For il-
lustration purposes, the paraphrases are sorted by a weighted 4-gram
precision score,14 shown in square brackets, which approximates the
well-known BLEU score. Here the first two realizations have been used
as reference sentences, and thus they receive perfect scores. Overall,
the first 5 paraphrases are the top ranked paraphrases, while the last 5
paraphrases are the worst ranked; the middle paraphrases are included
to further show the types of paraphrases that can be produced just
by allowing contrastive connectives to be realized in several ways and
treating sentence boundaries flexibly. In the next section, we will show
how many more possibilities may be realized by incorporating the addi-
tional text structures and lexicalization options in the SPaRKy corpus.

6 From SPaRKy Content Plans to DLFs

In this section, we illustrate how we derive DCCG disjunctive logical
forms (DLFs) from the same content and text plans used by Walker
et al.’s (2007) SPaRKy sentence planner. We also evaluate the coverage
of our DLFs, and discuss modifications to the existing SPaRKy text
plans which enable us to produce a greater variety of natural sounding
comparisons.

Figure 20 depicts the relationship between the SPaRKy inputs and
outputs, our derived DLFs and the resulting realizations. While the de-
tails will be discussed in the remainder of the section, as an overview,
this figure illustrates our intent to reuse the SPaRKy content plans and
text plans to produce our initial DLFs. These DLFs can then each be
used directly by OpenCCG to produce several turn-level realizations,
comparable to those found in the SPaRKy Restaurant Corpus. As the
figure indicates, the text plan mapper plays much the same role as the
SPaRKy sentence planner, and indeed, both components play a role
in handling lexicalization and aggregation and generating referring ex-
pressions. However, unlike the SPaRKy sentence planner, the text plan
mapper does not make specific choices; instead, it simply identifies the
range of possible choices, representing them compactly in a single DLF.
Note also that the DLFs are more abstract and semantically oriented
than SPaRKy’s sp-trees and d-trees, where syntactic dependency rela-
tions are employed and sentence boundaries are fixed.

Given that our approach does not involve sentence plans per se, we
also do not rank them as does SPaRKy. Instead, we plan to rank the

14Note that while using n-gram precision scores against target realizations is well
suited to grammar testing, such scores normally cannot be used in applications,
where target sentences are usually not already available.

Generating with Discourse Combinatory Categorial Grammar / 31

 

sptree/  
dtree 
 

sptree/ 
dtree 
 

sptree/ 
dtree 

Spur text planner 

Discourse 
Planner 

Sentence Planner 

OpenCCG 
Realizer 

using DCCG 

RealPro
Realizer 

content plan 

tp
tree 

tp
tree 

tp
tree 

… 

SPaRKy 

 

 

sptree/  
dtree 
 

sptree/ 
dtree 
 

sptree/ 
dtree 

… 

RealPro
Realizer 
 

RealPro
Realizer 
 

SPaRKy‐to‐DLF 
text plan mapper 

Potentially 
Modified 
DLFs 

Sentence 
Realization 

Sentence 
Realization 
 

Sentence 
Realization 
 

Turn 
Realization  Turn 

Realization 
 

Turn 
Realization 

… 
Sentence Plan Ranker 

… 

ranked 
list 

Sentence Plan 
Generator 

Realization 
Ranker 

Realization 

Realization 

Realization 

… 

ranked 
list 

Dialog Manager 

Communicative goal 

FIGURE 20 The relationship between the SPaRKy’s text plans and DLFs.
On the left side is the SPaRKy Sentence Planner, depicted as part of the

MATCH Spoken Language Generator architecture. On the right side is our
alternative approach using DLFs mapped from the SPaRKy text plan and

OpenCCG as the generator.

32 / LiLT volume 4, issue 1 September 2010

final realizations produced by OpenCCG, using our DCCG grammar.15

In a previous study on the SPaRKy Restaurant Corpus (Nakatsu,
2008), we found that developing a good ranker for the paraphrases
in the corpus is a non-trivial task, especially a ranker that does well
with contrastive connective choices. In a comparison, we found that a
simple ranker trained only on n-gram features yielded similar rankings
as SPaRKy’s (Walker et al., 2007) more sophisticated ranker trained
additionally on concept and tree features. However, we also found that
most of the examples involving contrastive connectives in the SPaRKy
Restaurant Corpus received low ratings by the human judges. Upon
further inspection, the low ratings were not necessarily attributed di-
rectly to the use of a contrastive connective but to some other aspect of
the sentence. Nevertheless, the large proportion of low rated examples
containing contrastive connectives caused the n-gram ranker to nega-
tively weight any use of a contrastive connective. Thus, we hypothesize
that if our DCCG can be used to produce additional realizations that
(with additional judgments) receive higher ratings than those already
in the SPaRKy Restaurant Corpus, rankers may not learn that con-
trastive connectives are a priori indicators of dispreferred realizations,
and thus better learn when they may be used naturally. For this reason,
in this paper we focus on how the realizations found in the SPaRKy
Restaurant Corpus can be generated with a DCCG, as well as addi-
tional realizations that go beyond those in this corpus, and leave the
development of better rankers for this domain for future work.

6.1 Sparky Restaurant Corpus

The SPaRKy Restaurant Corpus was generated by the MATCH Spoken
Language Generator (Walker et al., 2007), shown on the left side of
Figure 20. It consists of a dialog manager, the SPUR text planner
(Walker et al., 2004), the SPaRKy sentence planner (Walker et al.,
2007), and the RealPro surface realizer (Lavoie and Rambow, 1997).

The corpus contains realizations for 3 dialogue strategies:

. Recommend (REC): recommend an entity from a set of entities. Compare-2 (C2): compare 2 entities. Compare-3(C3): compare 3 or more entities

Each strategy contains several different content plans, each consist-
ing of a set of assertions and the rhetorical (discourse) relations that ex-
ist between two assertions, as in Figure 21. Following Rhetorical Struc-
ture Theory (RST; Mann and Thompson, 1988), each rhetorical rela-

15In practice, it makes sense to use an integrated ranker, at least for generating
an initial n-best list, if not for the final ranking.

Generating with Discourse Combinatory Categorial Grammar / 33

tion indicates which of the two related assertions is the nucleus (i.e., the
main claim that is “more essential to the writer’s purpose”) and which is
the satellite (i.e., the supplementary information that is less important
and thus substitutable/deletable without altering the main message
of the text). SPaRKy employs three of the RST relations depending
on the presentation strategy employed: contrast, elaboration and
justify. Content plans from the Recommend strategy exclusively em-
ploy the RST relation justify while those from Compare-2 use con-
trast and elaboration. Compare-3 content plans consist mainly of
contrast and elaboration relations, though 5 of the Compare-3
content plans exclusively use the justify relation instead. In addition,
SPaRKy specifies the infer relation between assertions whose relations
were not specified by the content planner. It does so after it has taken
the content plan as input and created text plans in the discourse plan-
ner, where the content plan assertions are ordered according to like
topics (i.e., by restaurant or by attribute). This results in text plan
trees (tp-trees) such as in Figure 22. These tp-trees are then input
into the sentence planner which creates sp-tree and dependency tree
(d-tree) pairs. Together, each pair supplies information as to how the
basic assertions are aggregated (i.e. grouped into sentences via clause
combining operations), and indicates the specific lexical items to be
used and their syntactic relations. These sp-tree and d-tree pairs are
then ranked by the sentence plan ranker, and input to the RealPro
realizer, which realizes one output for each sp-tree/d-tree pair.

The 8 basic assertions used in the SPaRKy content plans can be
grouped into 6 types (as shown in Figure 23): offer, highest-ranked,
price, located, cuisine, and have. As discussed further in Section 6.2,
SPaRKy text plans can be characterized as coming in two types: back-
and-forth and serial. Depending on the assertion type and text plan
type, assertions can be realized as a number of different surface forms,
ranging from full sentences to sentence fragments. While the back-and-
forth text plan type only realizes assertions as full clauses, in the serial
text plan type, a have assertion, for example, can be conjoined as a main
clause with either a proper noun or pronoun as subject (e.g. Monsoon/It
has decent decor); subordinated as a preposition phrase, headed by with
(e.g. with mediocre decor) and attached clause finally or NP finally (in
relative clauses); or predicated as a VP (e.g. has decent decor) joined
with the subject form of a cuisine predicate. The possible surface forms
for each type of assertion are listed in Figure 24.16

16Note that unlike the last four assertion types, offer is only realized as a main
clause with a proper name subject, because it only appears discourse-initially in
the SPaRKy text plans, and is never combined with other assertions at the surface

34 / LiLT volume 4, issue 1 September 2010

strategy: compare2
items: Bienvenue, Sonia Rose

relations: contrast(nucleus:1,nucleus:2)
content: 1. assert(has-att(Bienvenue,decor(decent)))

2. assert(has-att(Sonia Rose,decor(very good)))

(a) The single relation content plan corresponding to the LF in Figure 9

strategy: compare2
items: Hallo Berlin, Meskerem

relations: contrast(nucleus:1,nucleus:2)
contrast(nucleus:3,nucleus:4)

content: 1. assert(has-att(Hallo Berlin,service(mediocre)))
2. assert(has-att(Meskerem,service(decent)))
3. assert(has-att(Hallo Berlin,cuisine(German)))
4. assert(has-att(Meskerem,cuisine(African)))

(b) A multiple relation content plan

FIGURE 21 Examples of Compare-2 content plans used by SPaRKy to
generate contrastive descriptions in the SPaRKy Restaurant Corpus

In summary, each of the 3 strategies contain 30 content plans, for
a total of 90 content plans. From each content plan, 2-19 intermediate
stage text plans are created. Then, from those text plans, 1-10 sen-
tence plans and dependency plan pairs are generated, to make a total
of 16 or 20 sentence plan and dependency plan pairs per content plan.17

Four sentence plans were discarded due to duplication upon realization,
leaving 1756 realizations18 in the corpus. After the sentence and depen-
dency plan pairs were generated, each one was realized by the RealPro
surface realizer, resulting in a corpus of 1756 realizations.

6.2 SPaRKy Content and Text Plan Mapping

To generate the SPaRKy Restaurant Corpus using our DCCG, we map
the information from the SPaRKy content plans and text plans to
DCCG disjunctive logical forms (DLFs). We use SPaRKy’s text plan
trees (tp-trees), as in Figure 22, to map the discourse structure to a

level.
17Since this study is concerned with the output generated by SPaRKy, we did

not include the 90 handcrafted template realizations used in the evaluation of the
SPaRKy generator in the corpus.

18The total number of realizations reported here is inconsistent with the infor-
mation reported in (Walker et al., 2007). In corresponding with the authors of that
paper, it is not clear why this is the case; however, the difference in reported amounts
is quite small, and so should not affect the outcome of this study.

Generating with Discourse Combinatory Categorial Grammar / 35

contrast

ggggggg

CC
CC

CC
CC

nucleus:<2>assert-com-decor

nucleus:<1>assert-com-decor

(a)

contrast

ggggggg

CC
CC

CC
CC

nucleus:<1>assert-com-decor

nucleus:<2>assert-com-decor

(b)

infer

ccccccccccccccccc
[[[[[[[[[[[[[[[[[

contrast

eeeeeeeee

JJJJJJJJJJ contrast

eeeeeeeee

KKKKKKKKKK

nucleus:<1>assert-com-service nucleus:<3>assert-com-cuisine

nucleus:<2>assert-com-service nucleus:<4>assert-com-cuisine

(c)

contrast

ccccccccccccccccc
[[[[[[[[[[[[[[[[[

infer

eeeeeeeee

JJJJJJJJJJ infer

eeeeeeeee

KKKKKKKKKK

nucleus:<1>assert-com-service nucleus:<2>assert-com-service

nucleus:<3>assert-com-cuisine nucleus:<4>assert-com-cuisine

(d)

FIGURE 22 The tp-trees built by SPaRKy from the content plans in Figure
21. Figures (a) and (b) show the tp-trees for the content plan in Figure 21a.

Figure (c) is a back-and-forth tp-tree, while Figure (d) is a serial tp-tree,
for the content plan in Figure 21b.

36 / LiLT volume 4, issue 1 September 2010

Type Assertion
Example

offer assert-com-list exceptional
Bond Street and Komodo offer exceptional value
among the selected restaurants.

highest-ranked assert-com-list top
There are 5 highest ranked restaurants.

price assert-com-price
Ferrara’s price is 17 dollars.

locate assert-com-nbhd
L’ecole is located in TriBeCa SoHo.

cuisine assert-com-cuisine
Da Andrea is an Italian restaurant.

assert-com-food quality
Rain has very good food quality

have assert-com-service
Uguale has very good service.

assert-com-decor
Bienvenue has good decor.

FIGURE 23 Assertion Types

DLF, and then fill in the clausal arguments with information from the
asserted propositions in the content plan.

Initially, we select a content plan and use the associated SPaRKy
text plans as the starting point for mapping to our DLFs. As noted ear-
lier, SPaRKy text plans come in two types: back-and-forth and serial.
These types refer to the arrangement of the clausal arguments, in terms
of restaurant attribute groupings. Due to the differing arrangements,
both types require different mapping strategies.

In back-and-forth text plans, restaurant attributes are grouped by
attribute type, and so all the restaurants are compared by one attribute
first, then by a second attribute next, etc. For example, Figure 22c is
a text plan that produces the realization (among others) in (42). How-
ever, because of the continually changing restaurant subjects in back-
and-forth text plans, these text plans leave little room for individual
assertions to be realized as anything less than main clauses.

(42) Hallo Berlin has mediocre service but Meskerem has decent ser-
vice. Hallo Berlin is a German restaurant, while Meskerem is
an African restaurant.

In serial text plans, all the attributes of one restaurant are grouped
together, followed by all the attributes of the next restaurant, etc. Fig-

Generating with Discourse Combinatory Categorial Grammar / 37

Type Surface Forms
Example

offer main clause; proper noun subject
Bond Street and Komodo offer exceptional value
among the selected restaurants.

highest-ranked main clause; expletive-there subject
There are 5 highest ranked restaurants.

price main clause; proper noun subject
Ferrara’s price is 17 dollars.

main clause; pronoun subject
Its price is 20 dollars.

locate main clause; proper noun subject
L’ecole is located in TriBeCa SoHo.

main clause; pronoun subject
It is located in TriBeCa SoHo.

cuisine main clause; proper noun subject
Da Andrea is an Italian restaurant.

main clause; pronoun subject
It is an Indian restaurant.

demonstrative NP subject, attached to have-VP
This Chinese, Latin American restaurant ...

relative clause, attached to NP subject of have assertions
..., which is a Chinese restaurant, ...

have main clause; proper noun subject
Uguale has very good service.

main clause; pronoun subject
It has good decor.

with-PP, attached clause finally or NP finally
..., with very good food quality.

VP with cuisine-type as subject
... has very good food quality

FIGURE 24 Possible surface forms for each assertion type

38 / LiLT volume 4, issue 1 September 2010

ure 22d is an example of a serial text plan that produces the realization
(among others) in (43). Since all of the attributes are grouped around a
single restaurant, additional discourse strategies are possible, including
the generation of subject NP anaphora and the realization of basic as-
sertions as subordinate clauses or other sentence fragments, which can
be combined with neighboring assertions into a single sentence.

(43) Hallo Berlin has mediocre service, and it is a German restau-
rant. Meskerem, which is an African restaurant, has decent ser-
vice.

The back-and-forth and serial text plan classifications only apply to
text plans that relate 2 or more different restaurant attributes. Thus,
single-attribute text plans that only contrast one type of restaurant
attribute fall into neither text plan type. However, since the assertions
involved in single-attribute text plans do not have the freedom to be re-
alized as anything less than main clauses, they are mapped in a manner
similar to back-and-forth text plans.

6.2.1 Mapping Back-and-Forth Text Plans

The SPaRKy-to-DLF mapping strategy employed for back-and-forth
text plans is a simple top-down, order preserving, recursive rewrite of
the tp-tree into a DLF. It consists of the following 3 basic steps, where
Step 2 can be repeated as many times as is necessary, or omitted in the
case of single-attribute text plans. These steps, illustrated in Figure 25,
will be further detailed in the remainder of this subsection.

1. Map root node.

2. Map child relations to the argument relation slots. Repeat/Omit
this step as necessary.

3. Map content plan clause representations (terminal leaves) to the
remaining argument relation slots.

Step 1 begins with determining the relation stored in the root node
of the tp-tree. This root relation is mapped to the top level relation in
the LF. In addition, at this level, the semantic feature 〈turn〉complete
is specified to indicate that at this level the realization must be com-
plete. This first step is illustrated using a case where the root node
of the tp-tree is infer, as in the back-and-forth tp-tree in Figure 22c.
This relation is mapped to the discourse relation in the corresponding
LF as infer-rel, as depicted in Figure 25a. The feature (〈mood〉decl)?,
with the optionality operator, is also added, as it is for all relations,
to indicate that a sentence break is possible (subject to the grammar’s
constraints). In this case, note that the whole turn can be expressed as

Generating with Discourse Combinatory Categorial Grammar / 39

@i0(infer-rel ∧ 〈turn〉complete ∧ (〈mood〉decl)? ∧
〈Arg1〉(. . .) ∧
〈Arg2〉(. . .))

(a) Step 1: Map root node.

@i0(infer-rel ∧ 〈turn〉complete ∧ (〈mood〉decl)? ∧
〈Arg1〉(c0 ∧ (contrast-rel Y infer-rel) ∧ (〈mood〉decl)? ∧

〈Arg1〉(. . .) ∧
〈Arg2〉(. . .)) ∧

〈Arg2〉((c1 ∧ contrast-rel Y infer-rel) ∧ (〈mood〉decl)? ∧
〈Arg1〉(. . .) ∧
〈Arg2〉(. . .)))

(b) Step 2: Map child relations to the argument relation slots.

@i0(infer-rel ∧ 〈turn〉complete ∧ (〈mood〉decl)? ∧
〈Arg1〉(c0 ∧ (contrast-rel Y infer-rel) ∧ (〈mood〉decl)? ∧

〈Arg1〉(hsN1 ∧ have ∧ (〈mood〉decl)? ∧
〈Owner〉(rn1 ∧Hallo Berlin) ∧
〈Possn〉(s1 ∧ service ∧ 〈det〉nil ∧

〈Mod〉(sq1 ∧mediocre))) ∧
〈Arg2〉(hsN2 ∧ have ∧ (〈mood〉decl)? ∧

〈Owner〉(rn2 ∧Meskerem) ∧
〈Possn〉(s2 ∧ service ∧ 〈det〉nil ∧

〈Mod〉(sq2 ∧ decent))))∧
〈Arg2〉(c1 ∧ (contrast-rel Y infer-rel) ∧ (〈mood〉decl)? ∧

〈Arg1〉(bcN3 ∧ be ∧ (〈mood〉decl)? ∧
〈Arg0〉(rn3 ∧Hallo Berlin)∧
〈Pred〉(c3 ∧ restaurant ∧ 〈det〉nil ∧

〈Mod〉(cq3 ∧German))) ∧
〈Arg2〉(bcN4 ∧ be ∧ (〈mood〉decl)? ∧

〈Arg0〉(rn4 ∧Meskerem)∧
〈Pred〉(c4 ∧ restaurant ∧ 〈det〉nil ∧

〈Mod〉(cq4 ∧African)))))

(c) Step 3: Map content plan clause representations (terminal leaves) to
the remaining argument relation slots.

FIGURE 25 Step-by-step mapping from back-and-forth tp-tree in Figure 22c
to DLF

40 / LiLT volume 4, issue 1 September 2010

a single sentence, using and to express the infer relation, as well as two
separate sentences separated by a full stop. With the single-sentence
option, the grammar allows the 〈mood〉decl feature to be realized only
at this top-level, not at the lower levels. Otherwise, when expressing
the infer relation as a simple juxtaposition of separate sentences, the
grammar allows〈mood〉decl to be realized in the arguments (〈Arg1〉
and 〈Arg2〉) of infer-rel, and prevents its realization at the top-level.

In Step 2, the left subtree provides the contents of 〈Arg1〉, while
the right subtree provides the contents of 〈Arg2〉. This step can be
repeated as many times as necessary, in the event that the back-and-
forth tp-tree contains more levels of non-terminal nodes, or omitted
entirely in the case of single-attribute text plans. In this example, both
child nodes are contrast nodes which are mapped to the discourse
relations for each argument as in Figure 25b. In our DCCG, contrast
relations are always realized with an overt contrastive connective. How-
ever, since contrast can be implied by simple juxtaposition and no
use of an overt connective, we specify the alternative usage of an in-
fer relation, which will either not realize any connective, or will realize
the sentence level conjunction, and. Both “.” (full stop) and and are
realized in the SPaRKy Restaurant Corpus for text plans using a con-
trast relation. In our DLFs, we indicate the possible use of either
relation using the one-of operator (Y) as in Figure 25b.

Lastly, in Step 3, the leaves of the tp-tree that correspond to the as-
serted propositions from the original content plan are mapped to the re-
maining argument slots in the LF. As with the non-terminal nodes, the
left leaf provides the contents of 〈Arg1〉, while the right leaf provides
the contents of 〈Arg2〉. Each leaf is then mapped to a corresponding
template LF specification depending on the attributes of the assertion
(e.g. price, decor, etc.). This final step is illustrated in Figure 25c.

6.2.2 Mapping Serial Text Plans

To create a compact DLF for serial text plans, we require 5 steps,
where the first two steps are similar to those used in mapping back-
and-forth text plans. As in the previous subsection, these steps will be
further detailed in the remainder of this subsection, and are illustrated
in Figures 26 and 27.

1. Map root node.

2. Map child relations to the argument relation slots. Repeat/Omit
this step as necessary.

3. Map the possible sentence fragment LFs to a DLF for each leaf.

4. Add multi-clausal combinations to last sibling leaf.

Generating with Discourse Combinatory Categorial Grammar / 41

5. Map references from the node ID access list to the appropriate
argument relation slots.

As in back-and-forth text plans mapping, Step 1 starts with mapping
the root relation of the serial text plan. Using the serial text plan in
Figure 22d as an illustration, we first map its root, as shown in Figure
26a, adding in the 〈turn〉complete and the optional (〈mood〉decl)?
features. In this example, the root is a contrast relation, so as in
the earlier mapping example, we indicate the possible use of either the
contrast or infer relation using the one-of operator (Y).

In Step 2, we first identify the children of each root child, i.e. the
root’s grandchild nodes. If the grandchild nodes are leaves (as in our
example), we skip directly to Step 3. Otherwise, we continue with Step
2 as described in the previous mapping example, and repeat this step
again.

Step 3 is where the serial text plan mapping diverges notably from
back-and-forth text plan mapping. Because serial text plans allow for
more surface form possibilities for any given assertion than back-and-
forth text plans, we map the DLF partial clause specifications corre-
sponding to the different sentence form possibilities for each leaf to
separate DLF node structures. In addition, we separate out any shared
nodes that are common to many disjuncts, such as the restaurant name
node, and use reference nominals in the DLF clause specification in-
stead. This way, the common node is defined only once, which mini-
mizes the number of unique nodes used in the entire DLF. Step 3 is
repeated n− 1 times, where n is the number of sibling leaves.

To illustrate this step, we will map the 〈Arg1〉 (or leftmost branch)
of the root node. Since there are only two sibling leaves in this branch,
we only need to execute Step 3 once. Thus, Figure 26c shows the DLF
structure for the disjuncts of the leftmost leaf of the tp-tree (labeled
nucleus:〈1〉assert-com-service) in Figure 22d. Because this leaf 〈1〉 is of
the have assertion type and there are 4 possible surface forms for this
type, we map four possible disjuncts. Of the four disjuncts, the first one
defines a new node (including its lexical predication), whereas the last
three disjuncts reference the nodes to which the 〈ElabRel〉 relation
connects. These nodes are later defined in the disjunct set in Step 4
(Figure 27a).

Note that each node is named by a code that indicates the type of
leaf, type of disjunct, and the original SPaRKy leaf ID, as listed in
Figure 28. For example, in the node name hsN1, the first two letters
(hs) indicate that this node forms a DLF disjunct for a have-service
leaf. The following capital letter (N) indicates that the surface form

42 / LiLT volume 4, issue 1 September 2010

@c0((contrast-rel Y infer-rel) ∧ 〈turn〉complete ∧ (〈mood〉decl)? ∧
〈Arg1〉(. . .) ∧
〈Arg2〉(. . .))

(a) Step 1: Map root node.

(Not Applicable to this example, though possible for other serial text
plans).

(b) Step 2: Map child relations to the argument relation slots.

Disjunctive LF:
(@hsN1

(have ∧ (〈mood〉decl)? ∧
〈Owner〉(rn13) ∧ Hallo Berlin has mediocre service
〈Possn〉(s1)) Y

@bcN3(〈ElabRel〉(hsW1)) Y [bcN3 ... with mediocre service]
@bcP3

(〈ElabRel〉(hsW1)) Y [bcP3
... with mediocre service]

@c3(〈ElabRel〉(hsW1))) [c3 ... with mediocre service]

Shared nodes referenced in the above DLF:
@rn13(Hallo Berlin) Hallo Berlin
@hsW1(with∧ with mediocre service

〈Arg1〉(s1))
@s1(service ∧ 〈det〉nil ∧ mediocre service
〈Mod〉(sq1 ∧mediocre))

Node ID Access List: [hsN1]

(c) Step 3: Map the possible sentence fragment LFs to a DLF for each leaf. Above
is the DLF for the left-most clause of Fig. 22d.

FIGURE 26 Step-by-step mapping from serial tp-tree in Figure 22d to DLF
(continued in Figure 27)

Generating with Discourse Combinatory Categorial Grammar / 43

Disjunctive LF:
(@bcN3

(be ∧ (〈mood〉decl)? ∧
〈Arg0〉(rn13) ∧ Hallo Berlin is a German restaurant
〈Pred〉(c3)) Y

@i0(infer-rel ∧ (〈mood〉decl)? ∧
〈Arg1〉(hsN1) ∧ Hallo Berlin has good service (.|and)
〈Arg2〉(bcP3))) it is a German restaurant

(@rn13
(〈GenRel〉(bcN3)))? [rn13

..., which is a German restaurant,]

Potentially Shared Nodes (in the case of 3 or more sibling leaves):
@bcP3

(be ∧ (〈mood〉decl)?∧
〈Arg0〉(p3 ∧ pro3) ∧ it is a German restaurant
〈Pred〉(c3))

@cq3(German) German

Shared nodes referenced in the above DLF:
@c3(restaurant ∧ 〈det〉a ∧ a German restaurant
〈Mod〉(cq3))

Node ID Access List: [hsN1, bcN3, i0]

(a) Step 4: Add multi-clausal combinations to last sibling leaf. Above is the DLF for the
leaf labelled nucleus:〈3〉assert-com-cuisine in Fig. 22d.

@c0((contrast-rel Y infer-rel) ∧ 〈turn〉complete ∧ (〈mood〉decl)? ∧
〈Arg1〉(hsN1 Y bcN3 Y i0) ∧
〈Arg2〉(hsN2 Y bcN4 Y i1))

(b) Step 5: Map references from the node ID access list to the appropriate argument
relation slots. Above, the access list from Step 4 is mapped to 〈Arg1〉, while the access
list for the right branch of the root (mapping steps not shown) is mapped to 〈Arg2〉.

FIGURE 27 Step-by-step mapping from serial tp-tree in Figure 22d to DLF
(continued from Figure 26)

44 / LiLT volume 4, issue 1 September 2010

Code Assertion type Code Disjunct type
hd have-decor N proper (N)ame
hf have-food-quality P (P)ronoun
hs have-service W (W)ith
bc be-cuisine (restaurant type) T (T)his
bn be-neighborhood (location)
bp be-price

FIGURE 28 Node ID Legend

resulting form this disjunct will be a full sentence clause with a proper
noun subject. The final subscript (1) is the original SPaRKy content
plan ID for this leaf. These codes are generated for all the leaves in a
sibling set at the beginning of step 3, when the assertion types for all
of the leaves are also determined.

In addition to the disjuncts, the shared nodes referenced within them
are listed underneath. They include the node for the restaurant name,
which is shared by the disjunct set in Step 4 (Figure 27a), the with
predicate node, and the node for the object NP.

Lastly in Step 3, in order to make it possible to generate references
to nodes defined elsewhere, during the first iteration of the third step,
we create a node ID access list which we then update during each
iteration of the third step, as well as during the fourth step. This access
list contains the node IDs for any main clause with a proper noun
subject, which can be modified by a disjunct from each of its sibling
leaves to form a single sentence covering all of these leaves. In addition,
during the fourth step, we also add the node IDs of the multi-sentence
combinations, headed by infer relation nodes, to the access list. In our
example, the only ID added from our single iteration of Step 3 is hsN1

(main clause with proper noun subject for the have-service leaf).

Next, in Step 4, we add the potential multi-sentence combinations of
all the leaves sharing the same parent to the disjuncts of the rightmost
leaf of that sibling set (henceforth referred to as the rightmost leaf),
and shift potentially shared disjuncts from the DLF as explained further
below. Our example in Figure 27a shows the augmented DLF for the
rightmost leaf of this sibling set, labelled nucleus:〈3〉assert-com-cuisine
in Figure 22d. This augmented DLF is built in a similar fashion to
the leaf in Step 3. Initially, disjuncts leading to the first 3 of the 4
possible surface forms of cuisine assertion type (as listed in Figure 24)
are built into the DLF. This includes the disjuncts for realizing the
leaf as a main clause with a proper noun (restaurant name) as subject,
main clause with a pronoun as subject, and as a demonstrative subject

Generating with Discourse Combinatory Categorial Grammar / 45

NP. The fourth possible surface form, realization as a relative clause,
is characterized as an optional modification of the shared restaurant
name node shown in the previous Figure 26c. In our grammar, the LF
for subject relative clauses has a 〈GenRel〉 relation between the NP
head and the main clause semantics of the relative clause, where the
subject of that relative clause references the NP head node to which it
is attached. Thus, this fourth possibility lies outside of the disjunction
because when it is selected, it references the first of the disjuncts.

At this point, Step 4 diverges from Step 3 in that it makes a number
of alterations to the disjunction formed by the Step 3 process. First,
we delete any disjuncts that would not be realized due to the number
of the sibling leaves. In our example, leaf 〈1〉 is a cuisine assertion in
a 2-leaf sibling set, and so it will not be realized solely as a subject
NP. That disjunct is only realized if the cuisine assertion occurs as a
non-initial leaf in a serial text plan with 3 or more sibling leafs. Since
this is not the case in our example, we delete the subject NP disjunct.

Next, we add to the disjunct set any multi-sentence combinations
related by an infer relation. In our example, there are only two sib-
lings, so they can only be joined as full sentences by being placed one
after the other, in leaf order. This results in the disjunct headed by the
node labelled i0, where i refers to the connecting relation, infer. Note
that in this combination, the first argument of the infer relation is a
reference to the have-service assertion, realized as a full clause with a
proper noun subject, whereas the second (and final) argument of the
relation is realized as a full clause with an anaphoric pronoun subject,
since both sentences refer to the same restaurant.

If there were 3 or more sibling leaves, there would be more possible
multi-sentence combinations, all of which would reference the rightmost
leaf’s disjunct for realizing main clause with a pronoun subject. Since
this disjunct would be referenced or shared between many disjuncts,
we move this disjunct out of the DLF partial clause specification and
into the shared nodes section, so as to be with the other shared nodes.
Although this disjunct is not shared in our example, in order to be
uniform with the other cases, we label it as potentially shared, as it could
be shared if there were more multi-sentence combinations. Similarly, the
node for the cuisine modifier German is included here, as in other cases
it could be shared by a demonstrative subject NP.

Lastly, we update the node ID access list started in Step 3, with the
node IDs for the main clause with a proper noun subject, and the node
IDs for all multi-sentence combinations. In our example, this includes
the node bcN3 (main clause with proper noun subject for the cuisine
leaf), and i0, the only infer relation node.

46 / LiLT volume 4, issue 1 September 2010

Finally, in Step 5, we use the node ID access list completed in Step
4 to map disjunctive references to the possible leaf assertion combina-
tions. All the references for a given set of sibling leaves are placed as
disjuncts into the relevant argument slot of the root node mapping. In
Steps 3 and 4, our example covered the left branch of the root, which
corresponds to the first argument of the root contrast relation. Thus,
the node IDs collected in Step 4 will be placed into the 〈Arg1〉 node
in Figure 27b.

To map the right branch of the root, we repeat Steps 3 and 4 on that
branch of the tp-tree, and place the node IDs from the corresponding
access list into the 〈Arg2〉 node, which we have filled in Figure 27b.

6.2.3 Beyond Binary Branches

The mapping steps detailed above work best for binary branching trees.
However, there exist text plans with more than two branches on any
non-terminal level, and so additional mapping steps are needed to ac-
count for all the variations produced by SPaRKy.

SPaRKy text plans can have 2-5 branches from any given non-
terminal node, where each branch represents a discourse unit of one
or more clauses. Multiple branch nodes (referring to nodes with 3 or
more children) can happen at any level of the tree, and on more than
one level at a time. Trees can contain multiple siblings at the leaf level,
in additional to multiple branching at a higher level.

When a node in a SPaRKy text plan contains more than 3 branches,
SPaRKy probabilistically chooses one of several clause combining oper-
ations on adjacent branches, to create a new discourse unit, represented
in a sentence plan as a new binary branch. For example, if there are
3 leaf nodes from the same parent node, then SPaRKy may choose to
merge the first two clauses into a single sentence via conjunction or
subordination, or juxtapose each as full sentences (i.e. ended by a “.”,
and placed adjacent to each other). Then SPaRKy combines the new
2-clause discourse unit with the third clause, again, by conjunction,
subordination, or juxtaposition. SPaRKy continues in this fashion un-
til all the branches have been combined with one another, so that the
sentence plan is a binary tree. The probabilistic nature of the clause
combining is such that many different sentence plan trees (sp-trees) can
result from the same tp-tree.

In our DLFs, instead of recreating these probabilistic clause combi-
nations, we use disjunctions to compactly specify the alternative sen-
tence forms that each leaf can be realized as, whether there are only
two leaves or up to five leaves to combine. In this way, both lexical-
ization and aggregation decisions are deferred to the realizer, which

Generating with Discourse Combinatory Categorial Grammar / 47

can take both grammatical constraints and ranking preferences into
account when choosing surface forms.

6.3 Evaluation of the Mapping Process

To demonstrate the feasibility of our approach, we set out to exactly
reproduce the majority of the contrastive realizations in the SPaRKy
Restaurant Corpus, in order to illustrate the breadth of our DLF map-
ping approach in comparison to a comparable generator.

We started by excluding 685 of the realizations in SPaRKy Restau-
rant Corpus since their content plans did not include the contrast
relation. This included the 30 Recommend content plans and the 5
Compare-3 content plans that do not employ the contrast relation.
We also initially excluded another 5 content plans (totaling 100 real-
izations) that compare 4 or 5 restaurants in one long utterance because
we believe the information should be aggregated in a more compact
form for the listener to understand. Lastly, as we conducted our re-
gression testing, we became aware of and excluded an additional 36
realizations (across 8 different content plans) that have errors in either
subject-predicate agreement with respect to the copula or infelicitously
employed pronominal anaphora. Added together, we have excluded a
total of 821 realizations, leaving us with 935 target SPaRKy contrastive
realizations for our regression testing.

Using OpenCCG’s regression testing framework,19 we have verified
that we can reproduce 92% of the 935 target SPaRKy contrastive real-
izations. The remaining 8% of contrastive realizations are likely miss-
ing due to the limitations of our text plan mapping algorithm (though
search errors could also account for a portion of these). SPaRKy uses
a bottom-up approach to creating sentence plans, starting with a tp-
tree and applying clause combining operations to each node in the
tree probabilistically. Our text plan mapping method, on the other
hand, uses a one-pass top-down traversal to create DLFs, which in-
clude various alternatives for combining specifications for the leaves
of the tp-trees. In developing the algorithm, we have incorporated the
most frequent patterns used to create SPaRKy realizations, but have
found that enumerating all of the possible patterns becomes a time
consuming and error-prone process, especially when the content plan
contains 4 or more different sibling leaves (assertions). This can be a
similar problem for other large text plans, i.e. those that compare 4 or
more restaurants. In addition, the larger the resulting DLF is (that is,

19For regression testing, OpenCCG uses n-grams from a given target sentence to
guide the search, as illustrated in Figure 19, along with beam search to narrow the
search space.

48 / LiLT volume 4, issue 1 September 2010

the more patterns that a DLF must account for), the longer it takes for
OpenCCG to realize all the possible outputs for a given DLF or search
for a target realization in the case of regression testing. These diffi-
culties suggest that our one-pass algorithm does not scale well as the
DLFs become larger, and thus that adding another, bottom-up pass,
as in the SPaRKy approach, should be explored in future work.

We hasten to point out that in the end, using the above mapping
techniques, we can actually convert every targeted contrastive SPaRKy
text plan to a disjunctive HLDS representation, including those that
yielded the ungrammatical or infelicitous realizations that were then ex-
cluded and unreproduced.20 The resulting DLFs can then be realized
using OpenCCG, yielding several hundred to several thousand com-
plete realizations for each DLF, with quality ranging from very natural
to quite unnatural sounding realizations. Separating the desirable nat-
ural sounding realizations from the unnatural ones is a problem for
ranker, which we leave for future work. The realizations produced from
our DLFs cover the majority of the SPaRKy corpus, plus additional
possibilities that go beyond SPaRKy, to which we now turn.

6.4 Modifications to the SPaRKy Content Plans

In the interest of generating texts that use contrastive connectives in
more natural ways, we extend and refine existing SPaRKy text plan
features as a result of our mapping process. This includes realizing
contrastive connectives in serial text plans, and restricting referring ex-
pression generation. We also modify other SPaRKy content and text
plan features by adding to the text plan itself. This includes adding the
additive and merely relations into the tree when appropriate, along
with adding the evidence relation and summary clause semantics re-
quired to incorporate summary statements in serial text plans.

Contrastive Connectives in Serial Text Plans In SPaRKy, con-
trastive connectives are only realized for the back-and-forth text plans
and text plans that contrast only one type of assertion (i.e. only one
restaurant attribute). In our DCCG realizations, we additionally real-
ize contrastive connectives for serial text plans. That is, we can overtly
realize contrast relations that are higher up in the text plan, relating
two complex discourse units. For example, using the same text plan
as in Figure 22d from Section 6.1, we can produce the realization in

20We do not currently have the ability to map the larger 4- or 5-restaurant text
plans. Since they were initially excluded from the testing, no algorithm was de-
veloped to map these text plans. However, it would not be difficult to extend the
current algorithm to map these restaurant plans, although the difficulty in enumer-
ating all the plans remains.

Generating with Discourse Combinatory Categorial Grammar / 49

(44).21 In addition to this version that includes the contrastive connec-
tive however, we can also produce this and other SPaRKy realizations
without the use overt contrastive connectives.

(44) Hallo Berlin is a German restaurant, with mediocre service.
However, Meskerem, which is an African restaurant, has decent
service.

Referring Expression Generation In these back-and-forth text plans,
unlike SPaRKy, we do not generate pronouns for the restaurant sub-
jects. Due to the nature of the assertion order in these text plans, the
nominative references constantly change from one restaurant to the
other. This results in discourse where a pronoun and its antecedent
would always be separated by another restaurant referent, thus mak-
ing it difficult to retrieve the correct antecedent for a given restaurant
pronoun.

On the other hand, for serial text plans, we do adopt a similar strat-
egy as that used in SPaRKy by allowing restaurant references to be
realized as a pronoun if the antecedent has just occurred in the pre-
ceding discourse unit. Due to the nature of serial text plans, where all
assertions about the same restaurant are grouped together, no other
nominative reference intervenes between a given pronoun and its an-
tecedent.

As illustrated in the previous Section 6.2.2, we chose to create sep-
arate disjuncts for main clause specifications with proper noun sub-
jects and for those with pronoun subjects. While we could have used
the one-of operator (Y) to separate the disjuncts at the subject noun
specification, e.g. b2 ∧ (Bienvenue Y pro3), this would allow for the
infelicitous realization of cataphora, wherein the first quality in a serial
leaf sibling set was realized with a pronoun, and its “antecedent” (the
proper noun) was realized in a subsequent sentence. In order to con-
strain pronoun reference to anaphoric reference alone, we specify the
order of the main clause types such that main clauses with pronouns
can only occur after a main clause with the proper noun referent in a

21The version of (44) that does not contain a contrastive connective does not
appear in the SPaRKy Restaurant Corpus, though it should be possible generate
it using SPaRKy. We have chosen to use this realization, generated by our DCCG,
as our example rather than the more awkward one produced by SPaRKy in (43),
repeated here:

(43) Hallo Berlin has mediocre service, and is a German restaurant. Meskerem,
which is an African restaurant, has decent service.

50 / LiLT volume 4, issue 1 September 2010

serial text plan. In addition, we also do not allow several main clauses
with the same proper noun subject to occur adjacent to one another.

Additional Relations We employ two additional relations, additive
and merely, both of which are further discussed in Section 7. Follow-
ing Striegnitz (2004), we use the additive connectives, too and also,
to relate a pair of discourse units that meets her definition of also-
parallelism:

Definition 5.2 (Also-parallelism). Let S be a sentence, e the even-
tuality it describes, and let a1, ..., an be the entities that are specified
as participants of e by S. Furthermore, let p be the sort of e as specified
by S and q1, ..., qn the properties that S uses to describe a1, ..., an. S
is also-parallel with respect to the context iff the context provides an
eventuality e′ with participants b1, ..., bn such that bi and ai are alter-
natives for one i and qj holds of bj for all j 6= i. If the above conditions
hold, we will also say that eventuality e is also-parallel to eventuality
e′.

To illustrate this definition, consider (45) below. Prior to the mark-
ing of the additive relation (represented by also), the LF for (45b) is as
in Figure 29b. If the S under consideration is (45b), then e corresponds
to hsN2, and a1 and a2 correspond to the argument entities rn2 and
d2, respectively. The property q1 is simply Bienvenue, while the more
complex property q2 is decor ∧ 〈Mod〉(dq1 ∧ decent). The context is
given by (45a), in which e′ corresponds to hsN1, and b1 and b2 corre-
spond to rn2 and d2, respectively. Here, b1 (satisfying Sonia Rose) is
an alternative restaurant to a1, and if we assume that dq1 and dq2 are
co-referential (i.e. both are discourse referents for a unique attribute
value, namely the one satisfying decent), then q2 holds for both a2

and b2. Thus we can then say that S (45b) is also-parallel with re-
spect to the context provided by S′ (45a). Given this, we posit that an
additive relation holds between S and S′, where S′ is the sentence
containing e′.

(45) a. Sonia Rose has decent decor.

b. Bienvenue also has decent decor.

Though the definition above allows us to provide alternatives for any
qi, we currently restrict the alternative set to the set of restaurants in
the SPaRKy Restaurant Corpus. The insertion of the additive relation
into a tp-tree can be seen in Figure 31.

The merely relation, which can be realized by the discourse con-
nectives merely, just or only, is also optionally added between tp-tree
leaves which contain identical attributes, but in this case, differing val-
ues. That is, the merely relation can only be employed when the sec-

Generating with Discourse Combinatory Categorial Grammar / 51

@hsN1
(have ∧ (〈mood〉decl)? ∧
〈Owner〉(rn1 ∧ Sonia Rose) ∧
〈Possn〉(d1 ∧ decor ∧ 〈det〉nil ∧

〈Mod〉(dq1 ∧ decent)))

(a)

@hsN2
(have ∧ (〈mood〉decl)? ∧
〈Owner〉(rn2 ∧Bienvenue) ∧
〈Possn〉(d2 ∧ decor ∧ 〈det〉nil ∧

〈Mod〉(dq2 ∧ decent)))

(b)

FIGURE 29 Prior to adding the additive relation, the LF specifications
corresponding to (45a) and (45b) are in (a) and (b), respectively.

ond value is worse on the scale of desirability (i.e. is poorer) than the
first value, as is the case with the values very good and decent in (46).

(46) a. Sonia Rose has very good decor.

b. However, Bienvenue merely has decent decor.

However, it cannot be employed when the second value is located
clearly on the other side of a neutral point in the scale from the first
value, as in (47). This restriction is not exercised in our text plan mod-
ifications since the linguistic neutral point (which does not necessarily
correspond to any numeric calculation of a midpoint) intuitively seems
to be near mediocre or decent on the scale, and there are no terms at-
tested in the SPaRKy Restaurant Corpus indicating a worse gradation
than mediocre. Instead, we generate the merely relation when the first
criterion is met, and leave more fine-grained filtering to the automatic
ranker.

(47) a. Sonia Rose has very good decor.

b. # However, Bienvenue merely has poor decor.

In addition, regardless of the addition of the merely relation, in
serial text plans where the attributes of the same restaurant have values
on the opposite side of the neutral point, or one of the values is the
midpoint while the other is not, we also specify the alternate use of the
contrast relation in addition to the existing infer relation supplied
by the original SPaRKy tp-tree.

Lastly, when both values are on the negative side of the scale in
the merely relation, it would be odd if the more positive item were
presented first as in (48). Instead, the positive item should be last as
in (49).22

(48) a. Sonia Rose has mediocre decor.

b. # However, Bienvenue merely has poor decor.

22We thank one of our anonymous reviewers for the examples in (48) and (49).

52 / LiLT volume 4, issue 1 September 2010

Numeric Range Linguisic Term

8-13 mediocre
14-16 decent
17-19 good
20-22 very good
23-25 excellent
26-28 superb

FIGURE 30 Desirability Scale Mapping

(49) a. Sonia Rose has dreadful decor.

b. However, Bienvenue merely has poor decor.

Figure 31 illustrates the insertion of merely relations to a tp-tree.
In this example, there are two merely relations: one instance relating
the second summary statement to the first summary statement, and
a second instance relating the food-quality assertions. Figure 31 also
illustrates the alternation between infer and contrast in the right
subtree due to one of the values being the midpoint decent, while the
other is mediocre.

Summarizing Statements We have added summarizing statements
to serial text plans which map the average of the property ratings
for each restaurant to a degree of desirability, using the same mapping
scale that SPaRKy uses for each individual property.23 These summary
statements only apply to the subset of content plans that mention more
than one type of have assertion, since these are the only assertion types
that are mapped to the desirability scale. Based on the corpus, the
SPaRKy desirability scale maps a numeric rating (with an attested
range of 8-28; 28 being best) to a linguistic 6-point scale, given in Figure
30. To illustrate our summary statement, we use the example in (50),
with the summary statements in italics. Here we can see that based on
the SPaRKy scale, Sonia Rose, a restaurant with one very good quality
(rating=20) and one decent quality (rating=16), averages out to be a
good restaurant (rating=18). On the other hand, Bienvenue, which also
has a decent quality (rating=16) but in addition has a mediocre quality
(rating=10), averages out to be a mediocre restaurant (rating=13).

In addition, (50) also illustrates the other modifications and addi-
tions discussed in this subsection. The contrastive connective, however,
that joins the two restaurants in a serial text plan, is indicated in sans
serif font, while the anaphoric pronouns (in this case, it) are indicated

23Naturally, one could easily substitute other methods of determining a summary-
level rating during content planning, if desired.

Generating with Discourse Combinatory Categorial Grammar / 53

contrast

ggggggggggggggggg

WWWWWWWWWWWWWWWWW

evidence

lllllllll
LLLLLLL evidence

lllllllll
LLLLLLL

nucleus:(1’)
assert-summary

(mod:good)

infer

oooooooo
OOOOOOOO nucleus:(2’)

assert-summary
(mod:mediocre)

{infer|contrast}

oooooooo
OOOOOOOO

nucleus:<1>
assert-com-decor

(mod:decent)

nucleus:<3>
assert-com-food-

quality (mod:very good)

YY
nucleus:<2>

assert-com-decor
(mod:decent)

nucleus:<4>
assert-com-food-

quality (mod:mediocre)bb bb

merely

additive
merely

FIGURE 31 SPaRKy tp-tree altered with new relations and summary
statements, corresponding to Example 50.

in bold font. Lastly, the connectives also and only, which represent the
additional relations, additive and merely, respectively, are indicated
in small caps.

(50) (1’): Sonia Rose is a good restaurant.

<1>: It has decent decor and

<3>: very good food quality.

(2’): However, Bienvenue is just a mediocre restaurant.

<2>: While it also has decent decor,

<4>: it only has mediocre food quality.

7 Related Work

In terms of its discourse theoretical basis, DCCG is most closely re-
lated to D-LTAG. In general, as Webber (2006) observes, discourse
grammars vary in their theoretical style, from wholly based on de-
pendency relations (e.g. Halliday and Hasan 1976) to adherence to a
completely constituent-based model (e.g. Rhetorical Structure Theory
[RST], Mann and Thompson 1988; Linguistic Discourse Model, Polanyi
1988, Polanyi and van den Berg 1996). Dependency-based discourse
theories are advantageous because they allow discourse relations to ex-
ist between non-adjacent discourse units, lifting restrictions on which
clauses can serve as discourse arguments of a given relation. Compu-

54 / LiLT volume 4, issue 1 September 2010

tationally, this requires a large search space when attempting to deter-
mine the locations of the discourse units, as they can potentially be
found anywhere in the text. However, similar to the process of deter-
mining the referent of a coreferential pronoun in coreference resolution,
the location of the antecedent discourse unit is generally limited by
other factors such as recency effects or the presence of competing dis-
course units. In contrast, constituency-based discourse models narrow
the computational search space by determining the location of both dis-
course arguments using constituent-forming rules. A problem with this
approach, though, is that some discourse relations may exist between
two non-adjacent constituents. This is explicitly barred in continuous
constituency models such as RST, the discourse model that has been
most frequently used for generation tasks. D-LTAG (and thus DCCG,
in this respect) lies between these two extremes. It is a mixed depen-
dency/constituency model, in that structural connectives are treated in
a constituency-based manner while anaphoric discourse adverbials are
treated in a dependency-based manner. Discourse GraphBank (Wolf
and Gibson, 2005) is another type of mixed dependency/constituency
model, where the discourse model is treated as a shallow graph of dis-
course units linked to one or more previous discourse units. Segmented
Discourse Representation Theory (SDRT; Asher and Lascarides, 2003)
is another theory that, like D-LTAG, assigns a hierarchical structure to
discourse, but one that is not constrained to be a tree. It is interesting
to note that previous work on discourse parsing with RST and SDRT
(Soricut and Marcu, 2003, Baldridge and Lascarides, 2005) has em-
ployed separate discourse segmentation and discourse parsing stages,
mirroring the distinction between the separate syntactic and discourse
grammars in D-LTAG.

Since our disjunctive LFs are based on the SPaRKy text plans, which
draw their relations from the RST taxonomy, our structural relations
are also based on RST relations.24 However, neither RST nor SPaRKy
describe relations corresponding to our use of the anaphoric connec-
tives, also/too and merely/just/only, requiring us to look elsewhere for
relation definitions.

With respect to also/too, RST has associated also with the multin-
uclear restatement relation, which holds when “an item [discourse
unit] is primarily a reexpression of one linked to it; the items are of
comparable importance to the purposes of [the] W[riter]” (Mann and

24The usage of these relations in the DLFs differs from RST in that DLF’s do not
mark the RST nucleus/satellite distinctions on their discourse relation arguments,
although SPaRKy text plans do so. The nucleus/satellite distinction could easily
be added if it proved useful.

Generating with Discourse Combinatory Categorial Grammar / 55

Taboada, 2010). While this is clearly not the same relation we signify
in our use of also, it follows the general schema of all RST relations
in that this relation only holds between two adjacent discourse units.
This schema is potentially problematic for RST since in other usages,
the clauses that license also need not be adjacent to the clauses that
contain also, as was exemplified previously in (50). However, since RST
is not a lexicalized theory, there may be no need for it to account for
all discourse licensed adverbials.

The Penn Discourse Treebank (PDTB) Tagging Manual (Prasad
et al., 2008) has similarly reported that its annotators have identified
also as conveying the specification relation, though only for 1 token
out of 1746. Specification is a subtype of their restatement rela-
tion, wherein Arg2 describes the situation described in Arg1 in more
detail, and is thus the most similar relation to RST’s multinuclear
restatement relation. However, given the uniqueness of this assign-
ment, it is possible that this tag may be considered noise, though more
investigation is required to be certain. In addition, the PDTB tagging
manual reports three other relations that have been annotated for also.
The relation list, which applies when Arg1 and Arg2 are members of
a list defined in the prior discourse, was annotated for 10 out of 1746
tokens of also (0.6%), while the bulk of the also tokens (1733 tokens, or
99.3%) were labelled as conjunction, where the situation described in
Arg2 provides additional, discourse new, information that is related to
the situation described in Arg1. Lastly, two instances of also were anno-
tated as representing two relations – conjunction and synchrony,
where synchrony indicates that both arguments overlap in time.

Although it could be argued that our use of also is similar to that
described by the conjunction relation (in that in introduces the new
information in the form of the alternative subject), this relation also
applies when the entire argument (and not just one aspect) is new. This
is outside the scope of the also-parallel case we describe in Section 6.

In the theoretical pragmatics literature, and elsewhere as well, also
and too have frequently been classed as additive particles (König, 1991,
Krifka, 1998, Striegnitz, 2004, Creswell et al., 2002). Although the class
of additive particles may sometimes be taken to include additional ad-
verbials such as in addition or moreover (Creswell et al., 2002), it can
also refer to just those adverbials which satisfy a much narrower con-
dition. For example, according to Krifka (1998), additive particles ex-
press that the predication to which they are added holds for at least
one alternative of the expression in focus. This condition is similar to,
though slightly broader than, the also-parallelism condition that we are
employing in our DLFs.

56 / LiLT volume 4, issue 1 September 2010

With respect to only, there have been many analyses of it and
its exclusivity implications/presuppositions (Horn, 1969, Rooth, 1985,
König, 1991, Rooth, 1992, Roberts, Forthcoming). While only undoubt-
edly carries this interpretation, we are interested here in a different,
relational sense of only.25 In our examples in Section 6, we find that
the presence of only in our comparisons serves to ameliorate the felicity
of the utterance when bringing into focus a quality that is worse com-
pared with a previous quality. The same effect is also achieved using
merely or just. To our knowledge, previous research on only has not
addressed this particular relational meaning.

As noted in Section 2, while the usages of also and only that we
have focused on have not typically been treated on a par with other
discourse connectives, they nevertheless serve equally well as more com-
monly discussed adverbials such as then or otherwise for the purposes
of showing how discourse adverbials are handled in our single grammar
approach.

Returning to the issue of one versus two grammars, we observe that
in its use of a single grammar for both the sentential and discourse
levels, DCCG is reminiscent of G-TAG (Danlos, 2000). However, G-
TAG employs no mechanism like cue threading, instead expressing the
semantics of a discourse connective directly in its elementary tree, which
is allowed to span sentences. As such, it is unclear whether it could
be used to analyze paired intersentential connectives, each of whose
arguments can span multiple sentences. In addition, like D-LTAG, it
requires special post-processing of connectives in medial position.

Similarly to G-TAG, Banik’s (2009a, 2009b) discourse-level Tree Ad-
joining Grammar also incorporates discourse and syntax structure into
a single grammar. Currently, the focus of this grammar is to account
for the periphrastic generation of parentheticals and referring expres-
sions, issues which we have not yet addressed. Although the grammar
description includes a brief mention of a representation for discourse
connectives and their constraints on syntax, the connectives’ treatment
is not fully explained. Furthermore, it is unclear whether the discourse-

25Although only, even, also, too, etc. are usually analyzed as particles in the
theoretical literature, Stede has suggested that they might also convey the same
meaning as more typical discourse connectives (Webber et al., 1999), as in the
following example:

(1) a They laid waste to the park land.

b Moreover, they began cutting down trees.

b’ They even began cutting down trees.

Generating with Discourse Combinatory Categorial Grammar / 57

level TAG allows for discourse connectives to take scope over multiple
sentences, for multiple connectives occurring on a single clause, or for
connectives in sentence medial positions.

As discussed in Section 5, our cue threading technique itself is rem-
iniscent of Power et. al.’s (1999) cue store, a stack of discourse cues
accumulated from higher levels in a rhetorical structure tree. The use
of a stack of cues, rather than a single cue feature, as in DCCG, strikes
us as underconstrained. While multiple connectives are allowed, there
is no mechanism to prevent multiple structural connectives from occur-
ring in the same basic clause. The issue is avoided in later descriptions
of their generation system, where no more than one connective per
elementary proposition is considered (Power et al., 2003, p. 240). A
perhaps more important difference is that Power et al.’s focus is to in-
vestigate the relationship between rhetorical structure and document
structure, rather than the relationship between discourse and senten-
tial syntax, about which they say relatively little; conversely, issues of
document structure lie largely outside the focus of our work.

Cue threading also resembles Cooper storage for quantifiers (Cooper,
1983). Cooper storage enables a quantifier to take wider scope than
the surface syntactic position of its NP. In the same way, cue threading
enables structural connectives to have wider scope than the clause to
which they are syntactically bound. On the other hand, Cooper storage
allows multiple quantifiers to be in storage at any given time, leading
to scope ambiguities (which are attested, in this case). Cue threading
avoids these scope ambiguities by only keeping track of a single undis-
charged structural connective at once.

Finally, to compare our approach to SPaRKy (Walker et al., 2007),
we first note that SPaRKy, along with most approaches to discourse
generation (i.e. Hovy, 1988, Scott and de Souza, 1990, Walker et al.,
2002, Williams and Reiter, 2008), is based on Rhetorical Structure
Theory (RST; Mann and Thompson, 1987). By treating discourse ad-
verbials as anaphoric relations, we transcend the limitations of RST’s
constituent tree structure. In another difference, SPaRKy employs arbi-
trary transformations on clausal syntactic dependency trees to produce
its paraphrases, rather than a declarative, bi-directional grammar,26

which we suggest may be a more scalable solution. Lastly, as discourse
adverbials have not been employed in SPaRKy, its use of contrastive
connectives may be less natural than desired in many cases.

26A bi-directional grammar is one that can be used both for parsing and gener-
ating natural language.

58 / LiLT volume 4, issue 1 September 2010

8 Conclusions and Future Work

In this paper, we have shown how a simple cue threading technique
enables a lexicalized grammar such as CCG to be extended to han-
dle structural discourse connectives — leaving discourse adverbials to
be handled via anaphora resolution — without resorting to the use of
two separate grammars, as in D-LTAG. While in this paper we use the
resulting Discourse CCG, or DCCG, to generate paraphrased compar-
isons, in principle we could also use our DCCG in OpenCCG to parse
these same comparisons and others like them. However, currently we
do not employ an ambiguity resolution module, which can result in a
huge number of parses for a given comparison, or an anaphora reso-
lution module, which results in underspecified reference nominals for
anaphoric elements in the parse tree. Both such modules are areas for
future research.

We have also shown how DCCG can be used to generate comparative
descriptions that go beyond ones in the SPaRKy Restaurant Corpus,
including clauses with multiple connectives and non–tree structured
rhetorical dependencies, unlike traditional RST-based approaches. In
future work, we plan to collect ratings data that will allow us to train
a ranker for use with this DCCG. We also plan to investigate more
flexible approaches to ordering the arguments of discourse connectives,
together with constraints to ensure that the antecedents of discourse
adverbials are always realized in the preceding text.

Acknowledgements

We thank Bonnie Webber, Mark Steedman, Johanna Moore, Craige
Roberts, Erhard Hinrichs, Alex Lasacarides, Donia Scott, Markus Dick-
inson, and the anonymous reviewers for helpful comments and discus-
sion, as well as audiences in Edinburgh and Bloomington where earlier
versions of this work have been presented. In addition, we thank Mar-
ilyn Walker, Amanda Stent and François Mairesse for allowing and
supporting our use of the SPaRKy inputs and the SPaRKy Restaurant
Corpus. This work was supported in part by NSF grant IIS-0812297.

References

Asher, Nicholas and Alex Lascarides. 2003. Logics of Conversation. Cam-
bridge University Press.

Baldridge, Jason. 2002. Lexically Specified Derivational Control in Combina-
tory Categorial Grammar . Ph.D. thesis, School of Informatics, University
of Edinburgh.

Baldridge, Jason and Geert-Jan Kruijff. 2002. Coupling CCG and Hybrid
Logic Dependency Semantics. In Proc. ACL-02 .

References / 59

Baldridge, Jason and Geert-Jan Kruijff. 2003. Multi-Modal Combinatory
Categorial Grammar. In Proc. ACL-03 .

Baldridge, Jason and Alex Lascarides. 2005. Probabilistic head-driven pars-
ing for discourse structure. In Proceedings of the Ninth Conference on
Computational Natural Language Learning (CoNLL-2005), pages 96–103.
Ann Arbor, Michigan: Association for Computational Linguistics.

Banik, Eva. 2009a. Extending a surface realizer to generate coherent dis-
course. In Proceedings of the Short Papers of the Joint conference of the
Association for Computational Linguistics and the Asian Federation of
Natural Language Processing (ACL-IJCNLP-09), Singapore.

Banik, Eva. 2009b. Parenthetical constructions - an argument against mod-
ularity. In Proceedings of the workshop on Grammar Engineering Across
Frameworks,at ACL-IJCNLP-09, Singapore.

Blackburn, Patrick. 2000. Representation, reasoning, and relational struc-
tures: a hybrid logic manifesto. Logic Journal of the IGPL 8(3):339–625.

Cooper, Robin. 1983. Quantification and Syntactic Theory . Dordrecht:
D. Reidel.

Copestake, Ann, Dan Flickinger, Carl Pollard, and Ivan Sag. 2005. Minimal
recursion semantics: An introduction. Research on Language and Compu-
tation 3(4):281–332.

Copestake, Ann, Alex Lascarides, and Dan Flickinger. 2001. An algebra for
semantic construction in constraint-based grammars. In In Proceedings of
the 39th Annual Meeting of the Association for Computational Linguistics
(ACL 2001), pages 132–139.

Creswell, Cassandre, Katherine Forbes, Eleni Miltsakaki, Rashmi Prasad,
Aravind K. Joshi, and Bonnie Webber. 2002. The discourse anaphoric
properties of connectives. In Proceedings of 4th Discourse Anaphora and
Anaphor Resolution Colloquium (DAARC). Lisbon, Portugal.

Danlos, Laurence. 2000. G-TAG: A lexicalized formalism for text genera-
tion inspired by tree adjoining grammar. In Tree Adjoining Grammars:
Formalisms, Linguistic Analysis, and Processing . CSLI.

Dinesh, Nikhil, Alan Lee, Eleni Miltsakaki, Rashmi Prasad, Aravind Joshi,
and Bonnie Webber. 2005. Attribution and the (non-)alignment of syn-
tactic and discourse arguments of connectives. In CorpusAnno ’05: Pro-
ceedings of the Workshop on Frontiers in Corpus Annotations II , pages
29–36. Morristown, NJ, USA: Association for Computational Linguistics.

Forbes, K., E. Miltsakak, R. Prasad, A. Sarkar, A. Joshi, and B Webber.
2003. D-LTAG system: Discourse parsing with a lexicalized tree-adjoining
grammar. Journal of Logic, Language and Information 12:261–279(19).

Forbes-Riley, Katherine, Bonnie Webber, and Aravind Joshi. 2006. Comput-
ing discourse semantics: The predicate-argument semantics of discourse
connectives in D-LTAG. Journal of Semantics 23(1):55–106.

Halliday, M. A. K. and Ruqaiya Hasan. 1976. Cohesion in English, vol. 9.
London: Longman.

60 / LiLT volume 4, issue 1 September 2010

Hirschberg, Julia and Diane Litman. 1993. Empirical studies on the disam-
biguation of cue phrases. Computational Linguistics 19(3):501–530.

Hockenmaier, Julia and Mark Steedman. 2002. Acquiring compact lexicalized
grammars from a cleaner treebank. In Proceedings of Third International
Conference on Language Resources and Evaluation, pages 1974–1981.

Hockenmaier, Julia and Mark Steedman. 2007. CCGbank: A corpus of CCG
derivations and dependency structures extracted from the penn treebank.
Computational Linguistics 33(3):355–396.

Horn, L. R. 1969. A presuppositional analysis of only and even. CSL 5:98–
107.

Hovy, Eduard H. 1988. Planning coherent multisentential text. In Proceedings
of the 26th annual meeting on Association for Computational Linguistics,
pages 163–169. Morristown, NJ, USA: Association for Computational Lin-
guistics.

Kamp, Hans and Uwe Reyle. 1993. From Discourse to Logic. Kluwer.

König, Ekkehard. 1991. The Meaning of Focus Particles :A Comparative
Perspective. London; New York: Routledge.

Krifka, Manfred. 1998. Additive particles under stress. In D. Strolovitch and
A. Lawson, eds., Proceedings of SALT VIII , pages 111–129. Ithaca, NY:
CLC Publications.

Kruijff, Geert-Jan M. 2001. A Categorial Modal Architecture of Informativ-
ity: Dependency Grammar Logic & Information Structure. Ph.D. thesis,
Charles University.

Lavoie, B. and O. Rambow. 1997. A fast and portable realizer for text gen-
eration systems. In Proceedings of the 5th. Conference on Applied Natural
Language Processing , pages 265–268. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc.

Mann, William C. and Maite Taboada. 2010. Rhetorical structure theory.
http://www.sfu.ca/rst/.

Mann, William C. and Sandra A. Thompson. 1987. Rhetorical structure the-
ory: A theory of text organization. Tech. Rep. ISI/RS-87-190, University
of Southern California Information Sciences Instuture.

Mann, William C. and Sandra A. Thompson. 1988. Rhetorical Structure
Theory: Towards a functional theory of text organization. TEXT 8(3):243–
281.

Nakatsu, Crystal. 2008. Learning contrastive connectives in sentence real-
ization ranking. In Proceedings of the 9th SIGdial Workshop on Discourse
and Dialogue, pages 76–79. Columbus, Ohio: Association for Computa-
tional Linguistics.

Polanyi, Livia. 1988. A formal model of the structure of discourse. Journal
of Pragmatics 12:601–638.

Polanyi, Livia and Martin H. van den Berg. 1996. Discourse structure and dis-
course interpretation. In Proceedings of the 10th Amsterdam Colloquium,
pages 113–131. University of Amsterdam, The Netherlands.

References / 61

Power, R., C. Doran, and D. Scott. 1999. Generating embedded discourse
markers from rhetorical structure. In Proc. EWNLG-99 .

Power, Richard, Donia Scott, and Nadjet Bouayad-Agha. 2003. Document
structure. Computational Linguistics 29(2):211–260.

Prasad, R, E Miltsakaki, N Dinesh, A Lee, A Joshi, L Robaldo, and B Web-
ber. 2008. The penn discourse treebank 2.0 annotation manual. Technical
Report IRCS-08-01, Institute for Research in Cognitive Science, University
of Pennsylvania.

Roberts, Craige. Forthcoming. Only, presupposition and implicature. to
appear in the Journal of Semantics; the most recent 2006 manuscript is
available from http://ling.osu.edu/∼croberts/only.pdf.

Rooth, Mats. 1985. Association with Focus. Ph.D. thesis, UMass, Amherst.

Rooth, Mats. 1992. A theory of focus interpretation. Natural Language
Semantics 1:75–116.

Scott, Donia R. and Clarisse Sieckenius de Souza. 1990. Getting the mes-
sage across in RST-based text generation. In Current research in natural
language generation, pages 47–73. San Diego, CA, USA: Academic Press
Professional, Inc. ISBN 0-12-200735-2.

Soricut, Radu and Daniel Marcu. 2003. Sentence level discourse parsing using
syntactic and lexical information. In Proceedings of HLT-NAACL 2003 ,
pages 149–156. Edmonton.

Steedman, Mark. 2000. The Syntactic Process. MIT Press.

Steedman, Mark J. and Jason Baldridge. 2009. Combinatory Categorial
Grammar. In R. Borsley and K. Borjars, eds., Constraint-based approaches
to grammar: alternatives to transformational syntax . Oxford: Blackwell.
To appear.

Striegnitz, Kristina. 2004. Generating Anaphoric Expressions — Contextual
Inference in Sentence Planning . Ph.D. thesis, University of Saalandes &
Universit de Nancy.

Walker, M., A. Stent, F. Mairesse, and Rashmi Prasad. 2007. Individual and
domain adaptation in sentence planning for dialogue. Journal of Artificial
Intelligence Research (JAIR) 30:413–456.

Walker, Marilyn A., Owen C. Rambow, and Monica Rogati. 2002. Training
a sentence planner for spoken dialogue using boosting. Computer Speech
and Language 16:409–433.

Walker, M. A., S. J. Whittaker, A. Stent, P. Maloor, J. D. Moore, M. John-
ston, and G Vasireddy. 2004. Generation and evaluation of user tailored
responses in multimodal dialogue. Cognitive Science 28(5):811–840.

Webber, Bonnie. 2004. D-LTAG: Extending lexicalized TAG to discourse.
Cognitive Science 28(5):751–779.

Webber, Bonnie. 2006. Accounting for discourse relations: Constituency and
dependency. In Intelligent Linguistic Architectures, pages 339–360. CSLI
Publications.

62 / LiLT volume 4, issue 1 September 2010

Webber, Bonnie, Alistair Knott, Matthew Stone, and Aravind K. Joshi. 1999.
What are little texts made of? A structural and presuppositional account
using lexicalised TAG. In Proceedings of International Workshop on Levels
of Representation in Discourse (LORID’99). Edinburgh, UK.

Webber, Bonnie, Matthew Stone, Aravind Joshi, and Alistair Knott. 2003.
Anaphora and discourse structure. Computational Linguistics 29(4).

White, Michael. 2004. Reining in CCG Chart Realization. In Proc. INLG-04 .

White, Michael. 2006a. CCG chart realization from disjunctive logical forms.
In Proc. INLG-06 .

White, Michael. 2006b. Efficient Realization of Coordinate Structures in
Combinatory Categorial Grammar. Research on Language and Computa-
tion 4(1):39–75.

White, Michael and Jason Baldridge. 2003. Adapting Chart Realization to
CCG. In Proc. EWNLG-03 .

Williams, Sandra and Ehud Reiter. 2008. Generating basic skills reports for
low-skilled readers*. Nat. Lang. Eng. 14(4):495–525.

Wolf, Florian and Edward Gibson. 2005. Representing discourse coherence:
A corpus-based study. Computational Linguistics 31(2):249–288.

