
Linguistic Issues in Language Technology – LiLT
Submitted, April 2011

Detecting Ad Hoc Rules for
Treebank Development

Markus Dickinson

Published by CSLI Publications

LiLT volume 4, issue 3 April 2011

Detecting Ad Hoc Rules for Treebank
Development

Markus Dickinson, Indiana University

Abstract
We outline a method of detecting ad hoc, or anomalous, rules in tree-
bank grammars, by exploiting the fact that such rules do not fit with
the rest of the grammar. Ad hoc rules are rules used for specific con-
structions in one data set and unlikely to be used again. These in-
clude ungeneralizable rules, erroneous rules, rules for ungrammatical
text, and rules which are not consistent with the rest of the annota-
tion scheme. Based on the idea that valid rules should receive support
from other rules in the grammar, we develop two methods for detecting
ad hoc rules in flat treebanks and show they are successful in detect-
ing such rules. Although one can put some linguistic knowledge into
determining rule similarity and dissimilarity, the methods work best
by using a simple, modified Levenshtein distance. We illustrate this
on the English Wall Street Journal treebank and the German TIGER
treebank. For the latter, we extend the method to formalisms incor-
porating discontinuous constituents, employing CFG-like rules for the
comparisons.

1

LiLT Volume 4, Issue 3, April 2011.
Detecting Ad Hoc Rules for Treebank Development.
Copyright c© 2011, CSLI Publications.

2 / LiLT volume 4, issue 3 April 2011

1 Motivation

When extracting rules from treebanks, especially constituency-based
treebanks employing flat structures, grammars often limit the set of
rules (e.g., Charniak, 1996), due to the large number of rules (Kro-
tov et al., 1998) and “leaky” rules that can lead to mis-analysis (Foth
and Menzel, 2006). Although frequency-based criteria are often used,
these are not without problems because low-frequency rules can be
valid and potentially useful rules (Daelemans et al., 1999), and high-
frequency rules can be erroneous (Dickinson and Meurers, 2005b). A
key issue in determining the rule set is rule generalizability: are these
rules needed to analyze (new) data? Another way of phrasing this is:
are these rules worthy of being included in a treebank grammar? We
address the question of how to use information contained within a ba-
sic treebank grammar to better determine the linguistic quality of each
rule.

Note the range of applicability of examining grammar rule quality.
On the one hand, the rules in question may be a part of the internal
representation of a parser—that is, the rule set. Thus, determining
good/bad rules can be a part of rule filtering (Charniak, 1996)—thereby
improving parser efficiency—or parse reranking (e.g., Hall and Novák,
2005, Charniak and Johnson, 2005). On the other hand, the rules in
question may simply be part of an annotated corpus—whether hand-
annotated or automatically-parsed (van Noord and Bouma, 2009). As
pointed out in Dickinson (2010), identifying errors in automatically-
parsed data, for annotators to then post-edit, is one way to combat the
bottleneck of obtaining larger treebanks in a wider range of text types.
In either case, we are asking whether the rules from some grammar
fit the rules we observe in the data. If we think about these scenarios,
we have: a) a grammar extracted from an annotated treebank, being
compared to: b) individual rules of interest (in a corpus or a parser),
in order to determine whether the rules fit within that grammar.

This issue of grammar rule inclusion is of even more importance
when considering issues of grammar robustness, such as the task of
porting a parser trained on one genre to another genre (e.g., Gildea,
2001, McClosky et al., 2006, Rimell and Clark, 2008). Infrequent rules
in one genre may be quite frequent in another (Sekine, 1997) and their
frequency may be unrelated to their usefulness for parsing (Foth and
Menzel, 2006). Indeed, some parsing experiments alter the treebank
grammar for parsing text in a new domain (e.g., Foster, 2010). Taking
all of these points together, we thus define methods for detecting so-
called ad hoc rules, rules used for particular constructions specific to

Detecting Ad Hoc Rules for Treebank Development / 3

one data set and unlikely to be used on new data. We focus in this paper
on hand-annotated corpora, but believe the methods and perspective to
be applicable to the other tasks mentioned above.

Rules which do not extend to new text do so for a variety of reasons,
not all of which can be captured strictly by frequency. While there
are simply phenomena which are rarely used because they represent
language which is rarely used (e.g., long coordinated lists), other “un-
generalizable” phenomena are potentially more troubling. For example,
when ungrammatical or non-standard text is used, treebanks employ
rules to cover it, but do not usually indicate ungrammaticality in the
annotation. These rules are only to be used in certain situations, e.g.,
for typographical conventions such as footnotes, and pose a problem if
the set of treebank rules is intended to accurately capture the gram-
mar of a language. This is true in the case of precision grammars for
grammar checking and generation (e.g., Wagner et al., 2007, Bender
et al., 2004), and in applications like intelligent computer-aided lan-
guage learning, where learner input is parsed to detect what is correct
or not (e.g., Metcalf and Boyd, 2006, Dickinson and Lee, 2009). If one
simply wants to capture a better theoretical model of language, it is
also important to identify questionable rules, but even for robust pars-
ing, it seems advantageous to know that some rules work only in certain
situations.

Detecting ad hoc rules can also reveal issues related to rule quality, in
terms of errors and annotation scheme definitions. Many ad hoc rules
are simply erroneous. Not only are errors inherently undesirable for
obtaining an accurate grammar, but training on data with erroneous
rules can be detrimental to parsing performance (e.g., Dickinson and
Meurers, 2005b, Hogan, 2007), and parser evaluation becomes more
difficult to assess (e.g., Padro and Marquez, 1998, Habash et al., 2007).
Other ad hoc rules point to non-uniform or inconsistent aspects of the
annotation scheme. Thus, identifying ad hoc rules can also provide
feedback on annotation schemes, an especially important step if one
is to use the treebank for specific applications (see, e.g., Vadas and
Curran, 2007), or if one is in the process of developing a treebank.

Although statistical techniques have been employed to detect anoma-
lous annotation (Ule and Simov, 2004, Eskin, 2000), these methods
do not account for linguistically-motivated generalizations across rules,
and no thorough evaluation has been done on a treebank. Our starting
point for detecting ad hoc rules is also that they are dissimilar to the
rest of the grammar, and we use a notion of valency (cf., dependen-
cies) to drive the grammar rule comparisons. In section 2, we outline
the essential properties of valency and how they are encoded in flat

4 / LiLT volume 4, issue 3 April 2011

structures. From this, we outline some basic notions of dissimilarity
in section 3, relying on the fact that valid rules should receive sup-
port from other rules in the grammar, and we present quantitative and
qualitative evaluation in section 4. Because the notions of dissimilarity
rely upon a general notion of valency, they can be applied to tree-
banks which do not conform to the traditional context-free grammar
(CFG) formalism, namely treebanks with discontinuous constituents
(section 5). We evaluate the methods for discontinuous formalisms in
section 6, before turning to related work in section 7. A major contri-
bution of this work, in addition to outlining techniques to detect ad hoc
rules, is the qualitative analysis, which can provide insight into future
treebank development. Additionally, looking at rule similarity is a task
that is applicable to domains beyond parsing, such as product attribute
candidate extraction in sentiment analysis (Zhao et al., 2010).

Parts of this work have appeared in Dickinson (2006, 2008, 2009) and
Dickinson and Foster (2009), but have never been discussed as a unified
whole. We here highlight the theoretical issues involved across different
scenarios and in many parts provide more extensive evaluation.

2 A starting point: valency in flat treebanks

Our starting point for making rule comparisons is that of valency, by
which we mean the complete list of a head and its arguments and
adjuncts (Przepiórkowski, 2006): do rules have similar valencies or not?
Valency—in this sense, a list of dependents—is a core notion of what
defines a grammar. Certain valencies are well-formed and others are
not, or at least are less likely, leading us to expect consistency across
the set of valencies. While it is clear that dependency representations
capture valency as a matter of course (Dickinson, 2010), in this paper
we examine constituencies. We must thus show that: a) valencies are
obtainable from constituency treebanks and b) the grammars found in
treebanks are in need of improvement with respect to valency.

Every treebank encodes some notion of syntactic theory, even if it is
only the generally agreed-upon properties of a language (see, e.g., Ram-
bow, 2010), and there are competing factors in what kind of (descrip-
tive) linguistic theory is encoded (cf. Elworthy, 1995, Déjean, 2000).
On the one hand, corpus annotation is guided by external criteria: do
the distinctions capture linguistic properties needed for certain corpus
uses, such as parsing or linguistic searching? On the other hand, there
are internal criteria: can the distinctions can be annotated easily and
automatically?

Treebanks used for statistical parsing often emphasize broad cov-

Detecting Ad Hoc Rules for Treebank Development / 5

erage and thus internal criteria, making sure that the annotation can
be done consistently, with high inter-annotator agreement (e.g., Vouti-
lainen and Järvinen, 1995). This can be at the expense of true grammar
development, however. While the treebank is annotated quickly and in
a way which lends itself to parsing, it is not always clear what the
properties are of the encoded grammar.1

As one example, consider the partial tree in (1) from the Wall Street
Journal (WSJ) corpus portion of the Penn Treebank (PTB, Marcus
et al., 1993), which we will use throughout the paper. To avoid disagree-
ments between annotators, the trees are given relatively flat structures;
in this case, no one has to decide where the as prepositional phrase (PP)
attaches, instead including it simply as a daughter of the verb phrase
(VP). Thus, we wind up with rules like VP → VB NP PP NP, which
do not correspond to theories distinguishing arguments from adjuncts
in the syntactic structure. While a potential drawback, an advantage
of this rule is that all the dependents of the head VB (baseform verb)
are found as sisters to the head, i.e., all in one place, discussed more
below.

(1) VP

VB
join

NP

DT
the

NN
board

PP

IN
as

NP

DT
a

JJ
nonexecutive

NN
director

NP

NNP
Nov.

CD
29

Although such treebanks have served to advance the state-of-the-
art in computational linguistics, there are reasons for investigating the
grammars extracted from them. First, as illustrated above, treebanks
commonly contain rather flat structures and coarse categories. This
means that there are missing linguistic decisions, which have to be
recovered for linguistic searching or even parser training (cf. Klein and
Manning, 2003, Petrov et al., 2006). Secondly, there is the sheer number
of rules to contend with. The WSJ, for example, has over 17,000 rules
for 50,000 sentences. Grammar compaction methods can reduce the

1Notable exceptions are treebanks built in tandem with a grammar (e.g., Oepen
et al., 2004, Rosén et al., 2005, Bond et al., 2004).

6 / LiLT volume 4, issue 3 April 2011

size of the rule set (Krotov et al., 1998, Hepple and van Genabith,
2000), but, as mentioned in the introduction, there is still a need to sort
useful rare constructions from unhelpful ones (Foth and Menzel, 2006,
Daelemans et al., 1999). Finally, there is the problem of annotation
errors, which arise in the process of creating a large corpus. These errors
can have a detrimental effect on the training and evaluation of natural
language processing (NLP) systems (cf. Dickinson and Meurers, 2005a,
Hogan, 2007) and also on the precision and recall for finding desired
linguistic constructions (cf. Meurers, 2005). For example, Padro and
Marquez (1998) show that, for many current comparative evaluation
situations, one cannot truly tell which technology among competing
ones (e.g., POS taggers) is better.

Practically speaking, then, the grammars underlying flat treebanks
are worthwhile to inspect, as we know they are in need of refinement.
But the flat representation has a benefit, in that it encodes a great deal
about valency. In the above example (1), for instance, we know that the
VP contains 4 items which serve to form a whole syntactic and seman-
tic unit. For other representations, such as binary-branching treebanks,
such information can be obtained through traversing a tree—provided
that the head is identified—and thus this work is applicable to tree-
banks with a richer amount of information. However, grammars for
flat treebanks can serve as an excellent starting point for defining the
consistency of a grammar.2

3 Defining dissimilarity
3.1 Background
Our starting point for comparing rules comes from a method of annota-
tion error detection which searches for inconsistency of labeling within
local trees (Dickinson and Meurers, 2005b). This method is useful, in
that it revolves around the question of what properties of a rule are
expected to be consistent. As we will demonstrate, this leads to finding
equivalency between rules.

The method is based on the fact that one can generally determine the
syntactic category of the mother of a rule based on the categories of its
daughters. In other words, linguistic phrase structure rules tend to be
endocentric (cf. X-bar syntax, Jackendoff, 1977). Thus, Dickinson and
Meurers (2005b) search for variation in mother categories which dom-
inate the same daughters; daughters lists with more than one mother
are flagged as potential errors.

2For a discussion of portability of the method to richer treebanks, see section 5.2
of Dickinson (2009).

Detecting Ad Hoc Rules for Treebank Development / 7

As an example, consider the daughters list JJ , NN CC JJ, which
varies in the WSJ between unlike coordinated phrase (UCP) and adjec-
tive phrase (ADJP), as in (2). Here, there is indeed an error, as there
is no need for variation: the guidelines indicate that ADJP is erroneous
(Bies et al., 1995, p. 120).

(2) a. [UCP federal/JJ ,/, state/NN and/CC local/JJ] public offi-
cials

UCP

JJ
federal

,
,

NN
state

CC
and

JJ
local

b. [ADJP scientific/JJ ,/, engineering/NN and/CC academic/JJ]
communities

ADJP

JJ
scientific

,
,

NN
engineering

CC
and

JJ
academic

It is not only identical daughters lists which must share the same
mother, but also very similar daughters lists (Dickinson, 2006, 2009).
If, for example, the daughters lists ADVP RB ADVP and ADVP , RB
ADVP, as shown in (3), are treated as the same daughters list, then
there are two different mothers, PP and ADVP (adverbial phrase), and
this variation points to the presence of an error, in PP in this case.

(3) a. to slash its work force in the U.S. , [PP [ADVP as] soon/RB
[ADVP as next month]]

b. to report their purchases and sales [ADVP [ADVP immedi-
ately] ,/, not/RB [ADVP a month later]]

In the next section, we define what it means for daughters lists to
be similar enough to warrant having the same mother. A side effect of
defining similarity is that some rules are similar to nothing else: these
daughters lists are suspected not to be well-formed. For categories such
as PP, where there is generally a clear head (IN, TO (to), or PP),
one could search for rules without such a head (see, e.g., appendix A
of Hockenmaier, 2003) to flag errors. By looking for rules which are
not similar to others, however, we hope to find such types of cases
automatically.

8 / LiLT volume 4, issue 3 April 2011

3.2 Basic valency inconsistencies
Equivalence criteria
Setting up equivalence classes between rules requires us to generally
define when they are being used in the same way. For detecting incon-
sistencies in the labeling of a mother, we use the idea that anything not
contributing to prediction of the rule’s mother can be ignored. We use
fairly simple properties to establish equivalences between rules. Namely,
we employ the following steps for each daughters list:

1. Remove daughter categories that are always non-predictive to
phrase categorization.

2. Group head-equivalent lexical categories.
3. Model adjacent identical elements as a single element.

The first step removes daughter categories that are always adjuncts
and thus do not predict the mother phrase. For the WSJ data, there
are a few cases to handle. First, there is punctuation, which is not
involved in predicate-argument structure (cf. Hollingshead et al., 2005)
and is often not included in treebank rules (cf. Brants et al., 2002).3
Secondly, parentheticals (PRN) are always adjuncts when they occur
in a daughters list. Finally, empty elements (i.e., -NONE-) can refer
to any category, and thus they are uninformative with respect to the
mother category.

The second step groups what we call head-equivalent lexical cate-
gories. Phrases headed by, for example, either singular common noun
(NN) or plural common noun (NNS) are generally NP (noun phrase),
and this distinction does not seem to add any information in predict-
ing the mother. The full set of mappings is given in table 1, which is
similar to mapping #2 in Hepple and van Genabith (2000). All other
lexical tags, 13 of them, are only equivalent to themselves. It is im-
portant to note that the mappings here were originally motivated by
a desire to predict the same mother; as we will discuss in section 3.4,
these mappings are not entirely accurate at predicting the same syn-
tactic distribution (e.g., NN and NNS behave differently with respect
to determiners).

The final step models adjacent identical elements as a single element.
This is akin to modeling a flat series of identical categories with the
Kleene + operator (XP+). For instance, for the daughters list NN IN
NP IN NP, the second IN NP says nothing more about predicting the

3The specific punctuation marks we remove are: ’,’, ’.’, ’:’, ’;’, ’"’, ’(’, ’)’, ’$’,
and ’#’. One could certainly revise this, especially as, for example, quotation marks
sometimes indicate titles (cf. (8)), but initial experiments showed little difference in
adjusting the set.

Detecting Ad Hoc Rules for Treebank Development / 9

Base category Head Equivalence Classes
Determiners {DT, PDT, PRP$}
Adjectives {JJ, JJR, JJS}
Nouns {NN, NNS, PRP}
Proper nouns {NNP, NNPS}
Adverbs {RB, RBR, RBS}
Verbs {MD, VB, VBD, VBG, VBN, VBP, VBZ}
Wh-determiners {WDT, WP$}

TABLE 1 Head-equivalence classes in the PTB

mother category, and so this is mapped to NN IN NP. All repetitious
sequences are iteratively mapped into the shortest possible sequence
that is still predictive. On each iteration, the longest possible identical
adjacent sequence is mapped and passed to the next iteration; this
continues until nothing more can be reduced. JJ NN NN JJ NN, for
example, first reduces to JJ NN JJ NN, and then to JJ NN. This
Kleene reduction step bears much in spirit to the correcting of illegal
syntactic structures for the Penn Korean Treebank in Han et al. (2002),
where legitimate right-hand sides of rules are hand-encoded as regular
expressions, in order to detect and correct illegal syntactic structures.
For predicting the correct mother, as we will see, this is a valid step,
but for determining valency, we need to keep identical sequences intact.
Evaluation of equivalence criteria To evaluate whether or not
equivalence classes lose any predictive information, we sampled 100
equivalence classes from section 00 of the WSJ and examined them by
hand. In 98 cases, nothing predictive has been removed. In fact, in 24
of those cases, the mapping is complete, and nothing more could have
been removed.

The two unsuccessful mappings involve the label NAC (not a con-
stituent), as illustrated in (4). The daughters list NNP , NNP , reduces
to NNP, but NNP by itself does not predict NAC. In fact, Bies et al.
(1995, p. 208) mention that the presence of a comma partially de-
termines NAC here, showing the affect the annotation scheme has on
defining equivalence classes.4

(4) [NAC Albuquerque/NNP ,/, N.M./NNP ,/,]

In table 2, we present the average number of rule types and tokens
per equivalence class, as a way to get a sense of what the practical effect
of using equivalence classes is. We present this for each mother (LHS)

4We can note that many similar instances are not labeled NAC in the treebank.

10 / LiLT volume 4, issue 3 April 2011

category, as well as the overall numbers. In total, 15,246 rule types
are mapped to 4382 classes (3.5 types per class), indicating that, with
respect to predicting a mother category, there is much redundancy in a
rule. Even without the last step of Kleene reduction, there are only 6419
equivalence classes (2.4 types per class), potentially indicating that for
determining similarity among rules, a good deal of information can be
ignored. Unsurprisingly, the most frequent categories (NP, S, VP) see
the greatest rule type reductions, i.e., the most types per class.

None Step 1 Step 2 Step 3
Category Rules Ty. Tok. Ty. Tok. Ty. Tok. Ty. Tok.
ADJP 608 1.0 24.0 1.3 31.4 1.8 42.8 2.2 53.7
ADVP 298 1.0 75.3 1.1 85.0 1.4 107.4 1.8 136.9
CD 1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
CONJP 10 1.0 30.2 1.0 30.2 1.0 30.2 1.3 37.8
FRAG 239 1.0 2.2 1.6 3.5 1.6 3.5 1.8 3.8
INTJ 24 1.0 5.3 1.3 7.1 1.3 7.1 1.6 8.5
LST 8 1.0 4.8 2.0 9.5 2.0 9.5 2.0 9.5
NAC 47 1.0 8.7 1.2 10.3 1.3 11.1 1.7 15.2
NP 6282 1.0 55.8 1.4 75.2 2.3 125.6 4.2 234.6
NX 152 1.0 8.8 1.2 10.2 1.4 13.2 2.2 18.9
PP 334 1.0 286.2 1.5 434.5 1.6 464.0 1.9 543.1
PRN 253 1.0 9.6 2.4 22.8 2.6 24.4 3.0 28.5
PRT 9 1.0 293.4 1.0 293.4 1.5 440.2 1.5 440.2
PRT|ADVP 1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
QP 347 1.0 27.2 1.2 33.0 1.4 38.1 1.9 50.8
RRC 16 1.0 2.9 1.1 3.1 1.1 3.1 1.1 3.1
S 1675 1.0 59.8 3.8 228.5 3.9 230.6 4.9 290.1
SBAR 178 1.0 171.5 1.7 285.4 1.7 293.6 1.9 328.3
SBARQ 57 1.0 3.9 2.1 7.9 2.0 7.9 2.0 7.9
SINV 211 1.0 9.7 1.6 15.8 1.9 18.7 2.2 21.3
SQ 117 1.0 3.0 1.3 3.9 1.8 5.3 1.8 5.5
UCP 192 1.0 2.6 1.2 3.2 1.3 3.4 1.5 3.9
VP 3967 1.0 36.9 1.8 64.4 3.5 130.1 4.9 179.1
WHADJP 10 1.0 5.9 1.0 5.9 1.0 5.9 1.0 5.9
WHADVP 22 1.0 119.9 1.1 131.9 1.1 131.9 1.2 146.6
WHNP 119 1.0 76.6 1.1 81.4 1.4 104.8 1.6 123.2
WHPP 5 1.0 78.4 1.3 98.0 1.3 98.0 1.3 98.0
X 64 1.0 2.8 1.2 3.3 1.3 3.5 1.4 3.8
Total 15,246 1.0 52.0 1.56 80.9 2.4 123.5 3.5 180.9

TABLE 2 Average number of rule types per equivalence class (Ty.) and rule
tokens per equivalence class (Tok.) after each stage of rule reduction

The interpretation of equivalence classes We have described the
mapping into equivalence classes with the goal of predicting the same
mother category. However, these classes have a more linguistic interpre-
tation, in reducing a rule to its essential elements. With the exception

Detecting Ad Hoc Rules for Treebank Development / 11

of the third step—which potentially changes the set of dependents—
using these classes is an attempt to map rules with the same valency
to one another.

We can rephrase the intention of the first two steps as the following:

1. Remove non-linguistic material.

2. Group categories which have the same syntactic distribution.

This is a fairly crude way to ask whether two rules share the same
valency. In the coming sections, we will try to refine this notion such
that we better compare different rules with respect to their valents.

Dissimilarity
Viewing equivalences as a way to capture the essential linguistic ele-
ments of a rule has a noticeable consequence: a rule which does not have
any equivalents in the grammar is more likely to be “non-linguistic,” i.e.,
an error or other anomaly. Consider an example like (5): the daughters
list RB TO JJ NNS has no similar rules in the treebank—i.e., this is
a valency which no other rule shares—and it indeed is erroneous (Bies
et al., 1995, p. 179). Detecting rules without equivalents is thus our
first attempt at detecting ad hoc rules.

(5) [NP close/RB to/TO wholesale/JJ prices/NNS]

While anomalous valency detection can turn up ad hoc rules—
confirmed by the evaluation in section 4.1—this relies on a very strict
notion of similarity, when in practice rules are similar, though not
equivalent. The method needs to be refined to ensure higher accuracy,
more coverage, and more generality.

3.3 Ad hoc detection with equivalence classes
Backing off from strict (non-)equivalence, we explore two ways to define
the similarity between rules, relying on comparisons for the entire rule
(whole daughters method) and comparisons of local parts of a rule,
namely bigrams (bigram method). Other options could be explored,
but these provide different ends of a spectrum of rule abstractions.

As a first pass, we also employ equivalence classes since we pre-
sume that they are capturing linguistically-sensible properties of simi-
larity. We refer to these scores as reliability scores. After mapping rules
to equivalence classes, the general methods for determining similarity
(described next) are then used to determine which of the equivalence
classes is better or worse. In section 3.4, we discuss removing the de-
pendence on equivalence classes and being corpus-independent.

12 / LiLT volume 4, issue 3 April 2011

Whole daughters method with equivalence classes
A simple way of calculating similarity to reflect changes in valency is
to use edit distance between rules. This reflects the intuition that rules
with similar lists of daughters reflect the same properties. We opera-
tionalize this intuition by assigning each rule type a reliability score as
follows, where equivalence classes do not include Kleene reduction:

1. Map a rule to its equivalence class.

2. Add 1 for every rule token within the equivalence class.

3. Add 1
2 for every rule token within a highly similar equivalence

class.

This particular method of scoring is a “positive” way of scoring rules,
in that in step #3 we look for support from other rules that the rule is
legitimate. Rules without such evidence—i.e., with the lowest scores—
are flagged as potentially ad hoc. There are of course many possible
variants to scoring, e.g., different weightings for the second and third
steps, but this definition contains all the essential elements. In sec-
tion 3.4, we will to some extent tease apart the contributions of the
different components as we improve upon the methods, showing that
the similarity check in step #3 is the essential part of the process.

To determine similarity, we use a modified Levenshtein distance,
where only insertions and deletions are allowed, and a distance of one
between equivalence classes qualifies as highly similar.5 As for the first
modification, we do not utilize substitutions, as they are too problem-
atic, given the difference in meaning of each category. Consider the
problematic rule in (6), which occurs once. If we allow substitutions,
then we will find 760 “comparable” instances of VP → VB, despite the
vast difference in category (verb (VB) vs. adverb (RB)). As for the
second modification, allowing two or more changes would allow us to
add and subtract dissimilar categories.

(6) VP → RB

This definition of similarity captures generalizations such as adver-
bial phrases being optional. For example, in (7), after removing punc-
tuation, the rule reduces to S → PP ADVP NP ADVP VP. With a
strict notion of equivalence, there are no comparable rules. However,
the class S → PP NP ADVP VP, with 198 members, is highly similar,
indicating more confidence in this correct rule.

5The score is more generally 1
1+distance

, but we cut the distance at 1.

Detecting Ad Hoc Rules for Treebank Development / 13

(7) [S [PP During his years in Chiriqui] ,/, [ADVP however] ,/, [NP

Mr. Noriega] [ADVP also] [VP revealed himself as an officer as
perverse as he was ingenious] ./.]

In determining similarity, it may seem that allowing any insertion
or deletion is too lenient: rules could have multiple different kinds of
arguments, and removing or adding one changes the argument struc-
ture. The method finds problematic cases with valencies like no other
rule, as, for example, a verb with four NP sisters is hard to justify.
Relatedly, we do not treat heads specially, as identifying them would
require additional treebank-specific information; if one were to include
this information—e.g., not allow heads to be deleted or inserted—then
the method would likely be more effective.

Using this defintion of similarity, we can see the average number of
similar rules (both types and tokens) per equivalence class in table 3.
This is the number of rules which are similar, but not equivalent, to
a given equivalence class. For example, for an average NP equivalence
class, after step 2, there are 2.25 equivalent rule types within the class
(table 2) and 5.78 similar rule types (table 3). Some of the averages go
down (e.g., ADVP) because as the number of equivalent rules increases,
the number of similar ones potentially decreases. In general—even with-
out any equivalence class mappings (i.e., the None column)—similarity
pulls in a large number of new rules to provide evidence for a given rule,
indicating its potential utility without equivalence classes (section 3.4).

Bigram method with equivalence classes
The other method of detecting ad hoc rules abstracts a rule to its
component parts, namely bigrams, including added START and END
tags. Bigrams capture contextual information and can be abstracted
from any rule. This abstraction is similar to features using informa-
tion about n-grams of daughter nodes in parse reranking models (e.g.,
Collins and Koo, 2005). We assign reliability scores to rule types as
follows:

1. Map a rule to its equivalence class, resulting in a reduced rule.
2. Calculate the frequency of each <mother,bigram> pair in a (re-

duced) rule: for every (reduced) rule token with the same pair,
add a score of 1 for that bigram pair.

3. Assign the score of the least-frequent bigram as the score of the
rule.

Because we are interested in anomalous sequences, we assign the
score of the lowest-scoring bigram, essentially examining the weakest
parts, in order to more directly look for “negative” evidence that a

14 / LiLT volume 4, issue 3 April 2011

Category None Step 1 Step 2 Step 3
Ty. Tok. Ty, Tok. Ty. Tok. Ty. Tok.

ADJP 3.7 439.9 4.3 549.3 4.3 713.8 4.3 896.9
ADVP 3.8 1828.7 4.0 1991.6 4.2 2062.5 4.1 2568.7
CD 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
CONJP 2.0 78.0 2.0 78.0 2.0 78.0 2.5 121.0
FRAG 2.7 11.3 3.7 26.9 3.7 26.9 3.8 30.8
INTJ 1.8 12.2 1.9 21.6 2.0 22.3 1.8 21.9
LST 1.8 10.5 1.0 9.0 1.0 9.0 1.0 9.0
NAC 2.6 44.0 2.7 53.0 2.8 51.5 2.8 69.8
NP 5.1 1835.6 5.7 2252.2 5.78 3470.0 5.5 6665.4
NX 3.2 68.5 3.6 83.0 3.5 109.1 3.3 150.9
PP 3.3 8645.0 3.6 9438.6 3.7 9336.0 3.7 10,032.9
PRN 2.8 58.6 3.4 223.8 3.6 239.8 3.5 270.3
PRT 1.0 293.4 1.0 293.4 1.0 440.2 1.0 440.2
PRT|ADVP 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
QP 3.9 258.3 3.9 395.5 4.3 452.4 4.2 625.8
RRC 1.3 3.3 1.1 3.3 1.1 3.3 1.9 5.7
S 4.0 2200.9 4.8 8580.1 4.8 7996.2 4.7 9598.4
SBAR 3.2 2459.2 3.5 4344.5 3.5 4249.3 3.3 4640.7
SBARQ 2.4 19.3 2.4 43.3 2.5 43.4 2.5 43.4
SINV 2.6 86.9 3.2 148.0 3.5 178.0 3.6 206.6
SQ 2.5 14.6 2.8 24.2 2.9 39.2 3.3 43.9
UCP 1.9 7.6 2.3 10.8 2.2 11.5 2.3 12.8
VP 4.8 731.0 5.7 1153.9 5.9 3374.2 5.8 4643.1
WHADJP 1.6 15.7 1.6 15.7 1.6 15.7 1.6 15.7
WHADVP 2.7 747.6 2.9 793.8 2.9 793.8 2.7 772.8
WHNP 2.8 386.7 3.0 380.3 3.2 563.9 3.2 717.3
WHPP 1.0 78.4 1.0 97.8 1.0 97.8 1.0 97.8
X 1.7 5.8 2.3 8.6 2.3 9.6 2.6 11.6
Overall 4.5 1473.5 5.1 2085.7 5.0 3152.3 4.7 4605.0

TABLE 3 Average number of similar rule types (Ty.) & tokens (Tok.) per
equivalence class, after each stage of rule reduction (not including counts

for equivalent rules)

rule is ad hoc. This is in the spirit of Květon and Oliva (2002), who
define invalid bigrams for POS annotation sequences in order to detect
annotation errors.6

As one example, consider (8), where the reduced rule NP→ NP DT
NNP is composed of the bigrams START NP, NP DT, DT NNP, and
NNP END. All of these are relatively common (more than a hundred
occurrences each in the WSJ), except for NP DT, which appears in only
two other rule types. Indeed, DT (determiner) is an incorrect tag (NNP
[proper noun] is correct7): when NP is the first daughter of another NP,

6One could also explore a scoring method with bigrams which is more parallel
to the whole daughters method, as in Dickinson (2010).

7It may also be the case that NP-TTL is applicable here (Bies et al., 1995, p.
49); regardless, there is some error here.

Detecting Ad Hoc Rules for Treebank Development / 15

it is generally a possessive, precluding the use of a determiner.

(8) (NP (NP ABC ’s) (‘‘ ‘‘) (DT This) (NNP Week))

The whole daughters method misses such problematic structures be-
cause it does not explicitly look for local anomalies. The disadvantage
of the bigram method, however, is its missing of the bigger picture: for
example, the erroneous rule NP → NNP CC NP will get a large score
because each subsequence is quite common. But this exact sequence is
rather rare, since NNP and NP are not generally coordinated, so the
whole daughters method will assign a low score.

These two methods, using equivalence classes, are evaluated in sec-
tion 4.2.

3.4 Ad hoc detection without equivalence classes
As discussed in section 3.2, equivalence classes capture important lin-
guistic facts, namely: categories which (sometimes) have the same syn-
tactic distribution should be treated equivalently, and some categories
are (sometimes) optional. Mapping each rule to a single equivalence
class treats these facts as hard constraints, when in reality they are
only true in certain contexts (discussed below). Removing a step of
mapping rules into such classes will allow us to capture this “softer”
nature of similar syntactic distributions and at the same time remove
the methods’ reliance on treebank-specific information.

A first issue with equivalence classes is that the groupings into head-
equivalent categories are not always sound. For example, JJ (adjective)
and JJR (comparative adjectives) generally predict the same mother
(ADJP) and generally modify nouns. However, there sometimes are
syntactic differences. As an example, consider (9): comparative adjec-
tives are used in correlative the-clauses (Bies et al., 1995, p. 303ff),
whereas positive adjectives generally are not. This is a syntactic con-
text where the two categories are not replaceable; in this case, they
need to be treated separately.

(9) The sooner our vans hit the road ... [X the/DT easier/JJR] it
is for ...

Secondly, consider the redundancy in using equivalence classes: by
comparing rules to similar rules, we are already naturally capturing
equivalences among rules. The fact that the categories JJ and JJR often
are replaceable can be deduced by their similar behavior with respect to
other comparable rules. For instance, NP → DT JJ NN (9866 tokens)
and NP→ DT JJR NN (234 tokens) are comparable rules because they
both are one step away from NP → DT NN (29,217 tokens). Grouping

16 / LiLT volume 4, issue 3 April 2011

rules around the more basic rule NP→ DT NN already indicates similar
properties, without requiring pre-specification.

If we can remove the corpus-dependent rules for forming equivalence
classes, we can work on a variety of corpora without learning each
annotation scheme, and we can be more sensitive to the surrounding
categories. For example, a category may always be an adjunct, but it
is often important to know where the adjunct is. Consider (10a), with
the rule ADVP→ RB RB -LRB- PP -RRB- PP. Although both -LRB-
and -RRB- (codes for left and right brackets) are adjuncts, observing
them within another structure is odd, given that the preferred analysis
is to embed such bracketed material, as in (10b).

(10) a. . . . they try * to build it [ADVP somewhere/RB else/RB -
LCB-/-LRB- [PP in Europe] -RCB-/-RRB- [PP besides the
U.K.]] ,

b. [ADVP somewhere/RB else/RB [PRN -LRB- in Europe -
RRB-] [PP besides the U.K.]]

Although we now advocate abandoning equivalence classes, the
equivalences still provide a useful goal. Levenshtein distance, for exam-
ple, is effective as a means for determining similarity because it captures
properties such as the removability of adjuncts and the distributional
equivalence of categories.

Whole daughters method without equivalence classes
For both methods, the reliability scoring is based on two major com-
ponents, frequency of a rule and its similarity to other rules. Removing
the equivalence class restriction, we have the following as our method
for computing the whole daughters score:

1. For every identical rule token, add 1.
2. For every highly similar rule token, add 1

2 .

This is what is reported for the whole daughter reliability method in
section 4.3 (see table 6). It is clear that we can split the calculation
into a frequency score (#1) and a similarity score (#2). Given that fre-
quency is already something which has been used effectively in parsing
models, we want to determine the role of similarity in the detection of
ad hoc rules. When we calculate similarity scores for the whole daugh-
ters method, we simply count one for each similar rule (instead of 1

2),
as this has a natural interpretation of the number of similar rules (see
table 9).

Detecting Ad Hoc Rules for Treebank Development / 17

Bigram method without equivalence classes
Likewise, for the bigram method, we can rely only on similarity scoring
and factor out the frequency of the rule in question, in addition to
trying reliability scores. The similarity scores are calculated as follows:

1. Calculate the frequency of each <mother,bigram> pair in a rule.

2. Assign the score of the least-frequent bigram as the score of the
rule, minus the frequency of the rule in question.

Reliability scores are calculated in the same way, but without the sub-
traction in step #2.

These two methods, without relying on equivalence classes, are eval-
uated in section 4.3.

4 Evaluation of different methods

Having defined different ways to detect ad hoc rules, we now evaluate
them. We evaluate on a context-free treebank, namely the Wall Street
Journal (WSJ) portion of the Penn Treebank (PTB, Marcus et al.,
1993). In subsequent sections (5 and 6), we will discuss extending the
methods to treebanks with discontinuous constituents.

4.1 Evaluation of basic valency inconsistencies

For the first experiment, we examine the entire WSJ, following Dick-
inson and Meurers (2005b). As described in section 3.2, we group
rules into equivalence classes (including Kleene reduction) and examine
which rules have no equivalents, of which there are 2141 in the WSJ.
From a random sample of 100 of these 2141 unique rules, we find that
39 of them are errors. Thus, we estimate 835 erroneous rules overall,
with a 95% confidence interval of 630 to 1040 errors. Perhaps more
telling is the nature of the identified rules, which we now turn to.
Errors One of the major sources of errors is the overapplication of
flat structures in the treebank. In the WSJ, many constructions are
supposed to have no internal structure, such as nominal modifiers which
are themselves nouns, but many cases still require more structure. In
(11), for example, the RB JJ sequence annotated as in (11a) should be
bracketed as an ADJP, as in (11b). We find these cases because the RB
JJ sequence is anomalous without the ADJP layer of structure.

(11) there seems * to be [NP a/DT fairly/RB systematic/JJ ef-
fort/NN [S * to address the problem]]

18 / LiLT volume 4, issue 3 April 2011

a. NP

DT
a

RB
fairly

JJ
systematic

NN
effort

S

to address the problem

b. NP

DT
a

ADJP

fairly systematic

NN
effort

S

to address the problem

Likewise, our non-equivalence method finds categories which appear
in the wrong context. In (12), for instance, the category DT appears
in the daughters list DT ADJP CC PP, which should be CC ADJP
CC PP (cf. Santorini, 1990, p. 9). Given the context of the whole rule
(where CC is present), we are able to detect a mis-annotated category.

(12) [UCP both/DT [ADJP prudent] and/CC [PP in the best long-
term interest of the shareholders]]

Ungrammatical constructions Four constructions in our sample
cover ungrammatical language,8 for example, the rule QP → RB JJ $
CD, illustrated in (13). This is the best analysis given the annotation
scheme, but is clearly for ill-formed constructions (e.g., as little $ 3
should be as little as $ 3). Likewise, as shown in (14), there are rules
which are used to cover “financialspeak.”

(13) . . . they ’re charging [QP as/RB little/JJ $/$ 3/CD] *U* a day
.

(14) [NP [NP Net income] [X *] :/: [NP $ 599.9 million *U* ; or $
20.20 *U* a share]]

Annotation scheme & guidelines Perhaps most beneficial for tree-
banking purposes is the fact that identifying rules unlike any other un-
covers annotation practices which are non-uniform. As one example, we
find issues with the category QP (quantifier phrase), used for complex
numerical determiners. Both as little as and ranges of dollar amounts

8While the term “ungrammatical” can be debatable, we use it in instances where
the sentence is simply non-English; see, e.g., Foster (2007) for more discussion of
grammaticality and the need to distinguish it in natural language parsing.

Detecting Ad Hoc Rules for Treebank Development / 19

are supposed to be annotated as flat QPs (Bies et al., 1995, p. 194-202),
but there is little guidance on what to do when they are together, and
so we find flat QP structures, as in (15).

(15) [QP as/RB little/JJ as/IN $/$ 89/CD to/TO $/$ 109/CD]

As another example, consider a case like (16), which arguably con-
tains a parenthetical, namely the string and however unfairly. Since
parentheticals (PRN) are “determined ultimately by individual annota-
tor intuition” (Bies et al., 1995, p. 50), we cannot say that this analysis
is incorrect.

(16) [S [PP Like Lebanon] ,/, and/cc [ADVP however unfairly] ,/,
[NP Israel] [VP is regarded * by the Arab world as a colonial
aberration] ./.]

S

PP

Like Lebanon

,
,

CC
and

ADVP

however unfairly
. . .

4.2 Evaluation of ad hoc detection with equivalence classes
We now turn to the detection of ad hoc rules with a more general no-
tion of similarity (either whole daughters or bigrams), using equivalence
classes as a first step (section 3.3). With a more fine-grained definition
of similarity, we are now in a position not only to examine rule quality,
but also rule utility, i.e., whether rules are needed for new data. Thus,
to gauge our success in detecting ad hoc rules, we evaluate the reliabil-
ity scores in two main ways: 1) whether unreliable rules generalize to
new data and 2) whether the unreliable rules which do generalize are
ad hoc in other ways—e.g., erroneous. To measure this, we use sections
02-21 of the WSJ corpus as training data to derive scores and section
24 as evaluation data for development. This evaluation will help to un-
derstand the strengths and weaknesses of the two methods. We reserve
section 23 as test data for the final methods in section 4.3, where we
also perform n-fold cross-validation.

Ungeneralizable rules
In this section and in section 4.3, we examine how many rules from
the training data do not appear in the evaluation data, for different
thresholds, referring to this as the ungeneralizability rate. In table 4, for
example, the method identifies 3548 rules with scores less than or equal
to 50, 3439 of which do not appear in the evaluation data, resulting in

20 / LiLT volume 4, issue 3 April 2011

an ungeneralizability rate of 96.9%. This measures the degree to which
a rule was only needed for one particular data set.

To interpret the tables below, we first need to know that of the
15,246 rules from the training data, 1832 occur in the evaluation data,
or only 12.02%, corresponding to 27,038 rule tokens. There are also
396 new rules in the evaluation data, making for a total of 2228 rule
types and 27,455 rule tokens. The percentage of 12% appears quite low,
illustrating the need for doing this work in the first place: most training
rules are irrelevant for analyzing this new text.9

The results are shown in table 4 for the whole daughters method and
in table 5 for the bigram method. Both methods successfully identify
rules with little chance of occurring in new data, the whole daughters
method performing slightly better.10

Threshold Rules Unused Ungeneralizability
1.0 311 311 100%
25.0 2683 2616 97.5%
50.0 3548 3439 96.9%
100.0 4596 4419 96.2%

TABLE 4 Ungeneralizability of whole daughters method, using equivalence
classes (WSJ-24)

Threshold Rules Unused Ungeneralizability
1 599 592 98.8%
5 1661 1628 98.0%
10 2349 2289 97.4%
15 2749 2657 96.7%
20 3120 2997 96.1%

TABLE 5 Ungeneralizability of bigram method, using equivalence classes
(WSJ-24)

We have isolated thousands of rules with little chance of being ob-
served in the evaluation data, and, as we will see in the next section,
many of the rules are problematic in other ways. The reliability scores

9Treebanks constructed with pre-existing grammars may display a different pat-
tern, and in general one could use such measurements to investigate the quality and
portability of linguistic annotation.

10For additional results with this method, orthogonal to the main discussion here,
see Dickinson (2008).

Detecting Ad Hoc Rules for Treebank Development / 21

use token counts, but have the advantage of being able to identify in-
frequent but correct rules (cf. example (7)) and frequent but unhelpful
rules. For example, in (17), we find erroneous cases from the evaluation
data of the rules WHNP → WHNP WHPP (the node dominating five
should be NP) and VP → NNP NP (OKing should be VBG). These
rules appear 27 and 16 times, respectively, in the training data, but
have scores of only 28.0 and 30.5, showing their unreliability.

(17) a. [WHNP [WHNP five] [WHPP of whom]]
b. received hefty sums for * [VP OKing/NNP [NP the purchase

of ...]]

Other ad hoc rules
To figure out why some rules appeared in the evaluation data at all, we
hand-examined the rules appearing in the development data. We report
analysis for thresholds that resulted in approximately 100 flagged rules.
For the whole daughters scoring, at the 50 threshold, 55 (50.9%) of
the 108 rules in the development data are errors. Adding these to the
ungeneralizable rules, 98.5% (3494/3548) of the 3548 rules are unhelpful
for parsing, at least for this data set. An additional 12 rules cover non-
English or fragmented constructions, making for 67 clearly ad hoc rules.

For the bigram scoring, at the 20 threshold, 67 (54.5%) of the 123
rules in the development data are erroneous, and 8 more are ungram-
matical. This means that 97.9% (3054/3120) of the rules at this thresh-
old are unhelpful for parsing this data.
Problematic cases As for the remaining rules which are not er-
roneous or ungrammatical, there are several cases which reveal non-
uniformity in the annotation scheme or guidelines. Consider the case
of NAC (not a constituent), used for complex NP premodifiers. The
description for tagging titles in the guidelines (Bies et al., 1995, p. 208-
209) covers the exact case found in section 24, shown in (18a). This
correct rule, NAC → NP PP, is one of the lowest-scoring rules which
occurs, with a whole daughters score of 2.5 and a bigram score of 3.
Examining the guidelines more closely, however, we find examples such
as (18b). Here, no extra NP layer is added, and it is not immediately
clear what the criteria are for having an intermediate NP.

(18) a. a “ [NAC [NP Points] [PP of Light]] ” foundation
b. The Wall Street Journal “ [NAC American Way [PP of Buy-

ing]] ” Survey

Secondly, rules with mothers which are rare tend to always receive
lower scores. For example, the rules dominated by SINV, SQ, or SBARQ

22 / LiLT volume 4, issue 3 April 2011

are all correct (6 in whole daughters, 5 in bigram), but questions are not
very frequent in this news text: SQ appears only 350 times and SBARQ
222 times in the training data. One might thus consider normalizing
the scores based on the frequency of the parent.

Finally, there are issues with coordinate structures, for both meth-
ods. For example, NP → NN CC DT receives a low whole daugh-
ters score of 7.0, despite the fact that NP → NN and NP → DT
are very common rules. For the whole daughters method, of the 108
rules, 28 of them had a conjunct (CC or CONJP) in the daughters
list, and 18 of these were correct. Likewise, for the bigram method,
18 had a conjunct, and 12 were correct. Reworking reliability scores
to reflect coordinate structures and handle each case separately may
require treebank-specific knowledge: the Penn Treebank, for instance,
distinguishes unlike coordinated phrases (UCP) from other coordinated
phrases.

Comparing the methods
In general, both methods fare badly with clausal rules (those dominated
by S, SBAR, SINV, SQ, or SBARQ), but the effect is slightly greater
on the bigram scoring, where 20 of the 123 rules are clausal, and 16
of these are correct (i.e., 80% are misclassified). This stems from the
fact that most modifiers are adjoined at the sentence level when there
is any doubt about their attachment (Bies et al., 1995, p. 13), leading
to correct but rare subsequences. In sentence (19), for example, the re-
duced rule S→ SBAR PP NP VP arises because both the introductory
SBAR and the PP are at the same level, leading to a rare SBAR PP
sequence and a bigram score of 13.

(19) [S [SBAR As the best opportunities for corporate restructurings
are exhausted * of course] ,/, [PP at some point] [NP the market]
[VP will start * to reject them] ./.]

The whole daughters method, on the other hand, assigns this rule
a high reliability score of 2775.0, due to the fact that both SBAR NP
VP and PP NP VP sequences are common. For some rules with long
modifier sequences, the whole daughters method can be effective in a
flat treebank since modifiers are easily skipped over in comparing to
other rules.

The whole daughters method has difficulty with categories which
have a highly varied set of possible heads and arguments, such as quan-
tifier phrases (QPs). QP is “used for multiword numerical expressions
. . . where the QP corresponds frequently to some kind of complex de-
terminer phrase” (Bies et al., 1995, p. 193). This definition leads to

Detecting Ad Hoc Rules for Treebank Development / 23

rules which look different from QP to QP. Some of the lowest-scoring
correct rules are shown in (20). We can see that there is not a great
deal of commonality about what comprises quantifier phrases, even if
subparts are common and thus not flagged by the bigram method.

(20) a. [QP only/RB three/CD of/IN the/DT nine/CD] justices
b. [QP nearly/RB twice/RB] the national average
c. 10 % [QP or/CC more/JJR]

4.3 Evaluation of ad hoc detection without equivalence
classes

We now turn to the evaluation for ad hoc rule detection using gen-
eral similarity metrics but without employing equivalence classes (sec-
tion 3.4). First, we evaluate the reliability scores, and in the next section
we look at the contribution of similarity alone. For an in-depth analysis
of the different aspects of the method, we use the development data,
i.e., WSJ-24, and in section 4.3, we confirm our results on the test
data (WSJ-23). Table 6 shows the ungeneralizability rate for the whole
daughters method, for different thresholds, and table 7 for the bigram
method.

Threshold Rules Unused Ungeneralizability
1.0 1625 1617 99.5%
2.0 2801 2785 99.4%
3.0 3515 3479 99.0%
4.0 4011 3965 98.9%
5.0 4412 4357 98.8%

TABLE 6 Ungeneralizability of whole daughters method (reliability scores),
without equivalence classes (WSJ-24)

The results are quite good and dramatically surpass the values pre-
sented in the previous section (cf. tables 4 and 5). For example, a
threshold of 50 in the previous whole daughters method with equiv-
alence classes identifies 3548 rules with 96.9% ungeneralizability. For
that same approximate number of rules (threshold=3.0), the method
without equivalences has 99.0% precision. The bigram method shows
similar improvement. These results indicate that the methods can per-
form well without recourse to equivalence classes.
Equivalence classes Examining some cases by hand, we can analyze
how the method changes by removing the equivalence class criteria. As
an example affecting both methods, consider (21), with the rule NP
→ NP -LRB- NP , NP -RRB-. The whole daughters score goes from

24 / LiLT volume 4, issue 3 April 2011

Threshold Rules Unused Ungeneralizability
1 1157 1143 98.8%
2 1857 1828 98.4%
3 2341 2296 98.1%
4 2721 2665 97.9%
5 3054 2985 97.7%

TABLE 7 Ungeneralizability of bigram method (reliability scores), without
equivalence classes (WSJ-24)

5232.0 to 1.0, and the bigram method likewise goes from 12,368 to
40. The equivalence mappings reduce this rule to NP → NP NP NP,
thus losing crucial information about how bracketing should be done
for parenthetical information.

(21) [NP [NP Rep. Ronnie Flippo] -LRB-/-LRB- [NP D.] ,/, [NP Ala.]
-RRB-/-RRB-] , one of the members of the delegation , says ...

There are cases, on the other hand, in which not using equivalence
classes is worse, assigning low scores to correct rules. For instance, in
example (22), with the correct rule S → -LRB- “ NP ” VP . -RRB-,
the similarity score moves from 159,444 to 0. We see such a dramatic
difference because of punctuation. The reduced rule was S → NP VP,
which is clearly correct and similar to other rules. An important ques-
tion for working with an annotation scheme, then, is to determine which
elements are or are not informative.

(22) [S -LRB-/-LRB- “/“ [NP Quest for Fire] ”/” [VP was the first
time] ./. -RRB-/-RRB-]

The effect of similarity
One question about rule ungeneralizability is: to what extent is this
an effect of frequency and to what extent an effect of similarity (cf.
section 3.4)? As we can see in table 8, frequency on its own is a solid
indicator of a rule’s ungeneralizability, accurately identifying thousands
of rules which do not appear in the development data. However, in
identifying so many rules, it is rather coarse, not allowing us to sort
infrequent useful rules from infrequent problematic rules.

For the similarity scores (i.e., number of similar rules without includ-
ing the frequency of the rule in question), table 9 shows that the whole
daughters method is effective at identifying ungeneralizable rules. More
than that, this scoring is providing more fine-grained information.

As shown in table 10, the bigram method is less accurate in terms
of generalizability, with a 94.5% rate for scores of 0, for example.

Detecting Ad Hoc Rules for Treebank Development / 25

Threshold Rules Unused Ungeneralizability
1 8776 8627 98.3%
2 10,741 10,475 97.5%
3 11,601 11,253 97.0%
4 12,131 11,723 96.6%

TABLE 8 Ungeneralizability results based on rule frequency, without
equivalence classes and without using similarity (WSJ-24)

Threshold Rules Unused Ungeneralizability
0 1851 1819 98.3%
1 2622 2571 98.1%
2 3147 3080 97.9%
3 3538 3454 97.6%
4 3865 3769 97.5%
5 4149 4041 97.4%

85,957 15,246 13,414 88.0%

TABLE 9 Ungeneralizability of whole daughters method (similarity scores),
without equivalence classes (WSJ-24)

While this might indicate worse prediction, a cursory hand-examination
also shows that many of the identified rules are structures that seem
to reflect errors or non-uniform annotation scheme decisions, such as
CONJP → IN RB.

Threshold Rules Unused Ungeneralizability
0 1625 1535 94.5%
1 2323 2183 94.0%
2 2801 2631 93.9%
3 3178 2986 94.0%
4 3494 3284 94.0%
5 3781 3548 93.8%

33,907 15,246 13,414 88.0%

TABLE 10 Ungeneralizability of bigram method (similarity scores), without
equivalence classes (WSJ-24)

Analyzing rare rules To determine the effectiveness of the similarity
scores on isolating structures which are not linguistically sound, as
opposed to simply identifying ungeneralizable rules, we sampled 100
WSJ rules occurring only once in the training data. Without examining
the rule scores, we marked each as an error, ungrammatical, unclear,
or correct. Of these 100, 21 are errors, and 5 cover ungrammatical

26 / LiLT volume 4, issue 3 April 2011

constructions.
For the whole daughters method, we find that the bottom 22 cases

(scores = 0) contain 8 errors, as well as 3 ungrammatical structures. For
the bigram method, the bottom 26 cases (scores ≤ 5) have 8 errors and
3 ungrammatical constructions. By finding 38% of the errors and 60%
of the ungrammatical cases with just the bottom quarter of cases, these
similarity-based scores are, in practice, effective at sorting problematic
low-frequency rules from less problematic ones.

Results on test data
We confirm that the methods identify less useful rules on the test data,
using similarity alone. The whole daughters results are given in table 11,
while the bigram results are in table 12. The results are comparable to
those for the development data (compare tables 9 and 10).11

Threshold Rules Unused Ungeneralizability
0 1851 1818 98.2%
1 2622 2569 98.0%
2 3147 3064 97.4%
3 3538 3437 97.1%
4 3865 3747 96.9%
5 4149 4009 96.6%

85,837 15,246 12,980 85.1%

TABLE 11 Ungeneralizability of whole daughters method (similarity scores),
without equivalence classes (WSJ-23)

Threshold Rules Unused Ungeneralizability
0 1625 1519 93.5%
1 2323 2152 92.6%
2 2801 2588 92.4%
3 3178 2935 92.4%
4 3494 3228 92.4%
5 3781 3491 92.3%

33,907 15,246 12,980 85.1%

TABLE 12 Ungeneralizability of bigram method (similarity scores), without
equivalence classes (WSJ-23)

The bigram method consistently shows lower performance than the
whole daughters method. There are still a few reasons, however, to in-

11For evaluation showing similar behavior across different genres, see Dickinson
and Foster (2009).

Detecting Ad Hoc Rules for Treebank Development / 27

coporate the bigram method into a search for ad hoc rules. First, as dis-
cussed before, the method complements the whole daughters method, in
searching for different types of information. Secondly, as demonstrated
earlier, both methods successfully turn up other types of ad hoc rules,
most notably errors. Finally, it is not clear which type of method would
be better to incorporate into, for example, parser error detection work.
Indeed, in Dickinson (2010), the bigram method sometimes outper-
forms the whole daughter method for parser error detection in different
corpora.

N-fold cross validation
To further confirm the validity of flagging ad hoc rules with our two
methods, we performed n-fold cross validation, taking three sections of
the treebank at a time as the test data and all the rest as the basis for
the training grammar. As there are a total of 25 sections (00-24), we
do not include section 24 in any test set of our 8-fold cross-validation,
though it is included in training sets. We report the average scores
across the eight training scenarios in table 13 for the whole daughters
method and table 14 for the bigram method.

Threshold Rules Unused Ungeneralizability
0 13,347 12,694 95.1%
1 18,936 17,977 94.9%
2 22,613 21,358 94.5%
3 25,313 23,791 94.0%
4 27,642 25,879 93.6%
5 29,606 27,642 93.4%
All 108,572 84,805 78.1%

TABLE 13 Average ungeneralizability of whole daughters method (similarity
scores), without equivalence classes (8-fold cross-validation)

The first thing to note is that, because three sections are used for test
data, instead of just one, a lower percentage of rules are ungeneralizable
(78.1% vs. 85.1% in section 23, as seen in tables 11 and 12). Given this,
however, using low whole daughters scores is quite effective at finding
ungenerablizable rules. The bigram method is less effective, though still
an improvement over nothing at all.

5 Discontinuous constituents
In developing a corpus-independent method, we have focused to this
point only on treebanks with context-free rules. For languages with rel-
atively free constituent order, such as German, Dutch, or the Slavic

28 / LiLT volume 4, issue 3 April 2011

Threshold Rules Unused Ungeneralizability
0 12,339 10,844 87.9%
1 17,329 15,165 87.5%
2 20,980 18,359 87.5%
3 23,812 20,779 87.3%
4 26,074 22,706 87.1%
5 27,814 24,130 86.8%
All 108,572 84,805 78.1%

TABLE 14 Average ungeneralizability of bigram method (similarity scores),
without equivalence classes (8-fold cross-validation)

languages, the combinatorial potential of the language encoded in con-
stituency cannot be mapped straightforwardly onto the word order pos-
sibilities of those languages. As a consequence, the treebanks that have
been created, for example, for German (NEGRA, Skut et al., 1997;
VERBMOBIL, Hinrichs et al., 2000; TIGER, Brants et al., 2002) have
relaxed the requirement that constituents have to be contiguous. Al-
lowing crossing branches makes it possible to syntactically annotate
the language data without requiring postulation of empty elements as
placeholders or making other changes to the data.

Discontinuous constituents are strings of words which are not nec-
essarily contiguous, yet form a single constituent with a single label,
such as the noun phrase Ein Mann der lacht in the example of German
relative clause extraposition in (23) (Brants et al., 2002).12

(23) Ein
a

Mann
man

kommt
comes

,
,
der
who

lacht
laughs

A man who laughs comes.

Discontinuities pose a problem for comparing rules across a gram-
mar, since the current methods tacitly assume that constituents in a
rule are adjacent and non-overlapping. This issue is non-trivial: in the
TIGER treebank, for example, 27.5% of graphs contain crossing edges
(Hockenmaier, 2006).

5.1 An appropriate representation
Previous representations
Representing discontinuous rules is not a new issue; however, previous
representations have focused more on issues of theoretical compactness

12The ordinary way of marking a constituent with brackets is inadequate for dis-
continuous constituents, so we instead boldface and underline the words belonging
to a discontinuous constituent.

Detecting Ad Hoc Rules for Treebank Development / 29

or parsing than on the comparison of rules. For example, ID/LP rep-
resentations (see, e.g., Gazdar et al., 1985, Daniels and Meurers, 2004,
Volk, 1996) separate ID (immediate dominance) relations from LP (lin-
ear precedence) relations. However, ID/LP constraints are designed to
capture possibilities of rules, not their specific realizations.

Methods which convert discontinuous treebank structures into CFG
trees are useful for parsing, but lose information. The “raising” conver-
sion method lifts non-head nodes out of discontinuities (Kübler, 2005,
Kübler et al., 2006). Consider figure 1 (from Boyd, 2007) for the sen-
tence in (24). For the discontinuous VP (verb phrase), the category PP
(prepositional phrase) is raised out of the VP, leading to rules of S →
PP VMFIN VP and VP → VP VAINF. This method is clearly not
appropriate for comparing local rules across a treebank, as it changes
the rules.

(24) Mit
With

dem
the

Bau
construction

soll
should

1997
1997

begonnen
begun

werden
be

.

Construction should start in 1997.

FIGURE 1 A sentence with crossing branches in TIGER

The “splitting” approach (Boyd, 2007) splits categories into con-
tiguou spans, so as to create a context-free tree. For figure 1, for ex-
ample, the rule for S (sentence) becomes S → VP* VMFIN VP*, rep-
resenting the two parts of the rule. This leads to the rules VP* → PP
and VP* → VP* VAINF, among other extra rules beyond what is in

30 / LiLT volume 4, issue 3 April 2011

the original tree, obscuring rules such as the lower VP rule with its PP,
CARD (cardinal number), and VVPP (perfect participle) categories.

Reading rules off the trees
The representation we want needs to capture valency. As we have de-
fined it, valency lists encode linear precedence (in addition to domi-
nance relations), and our methods for ad hoc rule detection rely on
this ordering. If we wish to lose no information in the rules, the prob-
lem with discontinuities is that of establishing linear precedence.

If there are intervening words between complete categories in a rule,
then linear precedence within a rule can easily be established. For ex-
ample, the rule NP → D N captures both dominance and precedence,
as long as the category D completely precedes N—i.e., every item in the
yield of D precedes every item in the yield of N—regardless of whether
there are intervening words or whether D or N are themselves discon-
tinuous. However, if N wraps around D, then both NP → D N and NP
→ N D lose information, as part of N is before D, and part of N is after
it.
Discontinuous (-d) representation To directly encode discontinu-
ities in a representation, we take all continuous subparts of a discon-
tinuous daughter, and if there is more than one subpart, mark each
one with an indicator (-d) that the category is discontinuous. Consider
the example in figure 1, where there is a discontinuous VP. As all ele-
ments maintain strict orderings, the VP rules are straightforward: VP
→ PP CARD VVPP and VP → VP VAINF. The sentential (S) rule,
however, represents the fact that the VP wraps around VMFIN (modal
finite verb): S → VP-d VMFIN VP-d.13

This is much in the spirit of a splitting method (Boyd, 2007), but
note how it differs: when there is a rule such as S → VP-d VMFIN
VP-d, the representation in Boyd (2007) posits two separate VP-d (or
VP*) rules for the daughter categories, in order to reconstruct a full
tree. In order to maintain a representation which directly captures the
valency in the treebank, we have only one rule for the VP daughter.

This type of representation is well-suited for detecting anamolous
valencies: on the one hand, when there are strict orderings among el-
ements, no additional notation is used, thereby representing all de-
pendents of a head. On the other hand, discontinuities are often only
licensed in certain situations. Thus, marking categories as split allows

13One could write the d on the side where there is a discontinuity, e.g., VP-d
VMFIN d-VP, but we did not, due to a concern over data sparseness, especially
considering categories such as d-VP-d; one could explore this further in the future,
though our results are fairly strong as is (section 6).

Detecting Ad Hoc Rules for Treebank Development / 31

one to capture these licensing contexts—e.g., the initial field before a
finite verb, as in the S rule above.

We should note that, because we do not explicitly link different parts
of a discontinuous category, sometimes information is lost in this rep-
resentation. For example, in the rule S → NP-d VVFIN CARD NP-d
NP-d PTKVZ NP-d, we cannot be sure which NP-d units are linked
with one another. An alternative to this encoding is to index the dis-
continuities, as in S → NP-d1 VVFIN CARD NP-d1 NP-d2 PTKVZ
NP-d2 . While unambiguous, we do not wish to subdivide categories in
such a way as to make category comparisons more difficult.
Flat representation Recall that the guiding principle for compar-
ing rules across a treebank is to capture valency requirements and find
those which are odd. An alternative approach to the explicit discontin-
uous representation above is to simplify and only capture the category
information of a rule, ignoring discontinuities.

To achieve this, we start with the formalism of Discontinuous Phrase
Structure Grammar (DPSG) (Bunt, 1996, Plaehn, 2004). In this formal-
ism, daughters are listed as in CFG rules, but so are context daughters,
indicating the material found within a discontinuous structure, but not
a part of it. For the tree in figure 1, the rules would be as in (25), and in
(25a), we find the inclusion of a context daughter in brackets: VMFIN
is not a daughter of this VP, but occurs between its daughters. Addi-
tionally, using a notion of adjacency sequences, elements within a rule
are ordered by the position of each’s leftmost daughter: a constituent’s
leftmost daughter is required to precede the next constituent’s leftmost
daughter. In (25c), for example, defining precedence in terms of the left-
most daughter results in VP preceding VMFIN, even though in reality
it, in some sense, wraps around the VMFIN.

(25) a. VP → PP [VMFIN] CARD VVPP
b. VP → VP VAINF
c. S → VP VMFIN

We use this flat representation, but remove the context daughter
information, as context daughters do not indicate information about
valency. Specifying precedence based on the leftmost daughter is a
somewhat arbitrary decision, but the benefit is that we have a sin-
gle VP daughter of S. One could explore using the rightmost daughters
to determine precedence, but we expect little difference.

Function labels
As can been seen from figure 1, the TIGER treebank contains function
labels, which have been ignored up to this point. However, work on

32 / LiLT volume 4, issue 3 April 2011

parsing German often includes such labels in their parsing and evalua-
tion, as the labels indicate important properties regarding grammatical
functions (see, e.g., Kübler et al., 2006). Thus, it seems worthwhile to
explore the generalizability when function labels are and are not in-
cluded. To do this, we simply expand each child label to include the
function label. With a flat structure representation, for example, we
will obtain the rules from figure 1 as shown in (26).14 Note that we do
not include the function label in the mother, capturing the fact that
the mother category is endocentrically determined, i.e., its function in
the sentence is generally not determined by its children.

(26) a. S → VP-OC VMFIN-HD
b. VP → VP-OC VAINF-HD
c. VP → PP-OP CARD-MO VVPP-HD

Secondary edges
For the TIGER treebank, secondary edges are used for coordinate con-
structions which involve constructions such as gapping and right node
raising (Brants et al., 2002). This means that a particular node may
have both a primary parent and a secondary parent, as illustrated in
figure 2 for the sentence in (27).15

(27) Die
The

Inflation
inflation

liegt
lies

bei
at

13
13

Prozent
percent

,
,
die
the

Industrieproduktion
industrial production

ist
is

1991
1991

gesunken
decreased

,
,
die
the

Zahl
number

der
of the

Arbeitslosen
unemployed

gestiegen
increased

.

.
Inflation is at 13 percent, the industrial output decreased in
1991, the unemployment numbers increased.

FIGURE 2 A graph with a secondary edge in TIGER

14OC=clausal object, HD=head, OP=prepositional object, MO=modifier
15Although the secondary edge in this tree is to the left, they can in principle

occur in different locations.

Detecting Ad Hoc Rules for Treebank Development / 33

On the one hand, these secondary edges seem to contain useful in-
formation about the parent—e.g., a rule like S → NP VVP becomes S
→ VAFIN NP VVP when the secondary information is included, i.e.,
actually containing a finite verb (VAFIN). On the other hand, if we
treat secondary edges completely as we treat primary edges, at some
point in a connected graph, two sisters will share the same descendent
node, since the node has two parents. To obtain the informative value
of secondary edges while avoiding overly cumbersome rules, we incor-
porate secondary edges only at the level at which they are introduced.
For example, the secondary child of the S is included in the rule S →
VAFIN NP VVP, but the CS (coordinated sentence) rule dominating
the S does not include the secondary edge, thereby making this S child
fully contiguous within the CS rule (CS → S S S).

6 Evaluation for discontinuous constituents
Data preparation To test the method on a corpus with discontinuous
constituents, we use the TIGER corpus of German (Brants et al., 2002).
For this, we split the data into training, development, and test sections,
following the split in Dubey (2004). We include rules for ROOT nodes;
the results obtained below are parallel when examining only non-ROOT
rules.

Based on the previous evaluation (section 4), we only use similar-
ity scores of our two methods, and we find similarity without equiva-
lence classes; this is held constant across all tables of results in this
section. Still, there are two different ways of breaking down the data
(section 5.1): firstly, there is the issue of whether to explicitly represent
discontinuities, or to use a completely flat structure. Secondly, there is
the issue of whether to include function labels or not. Thus, we will
present four sets of results on the two different methods.
Without function labels We start the examination for representa-
tions without function labels. For the whole daughters method, com-
paring the lowest thresholds in table 15 (flat representation) to those
in table 16 (discontinuous representation), we can make an immediate
observation: the lowest scores identify more rules for the representation
explicitly marking discontinuities—e.g., 4814 vs. 3083 for a threshold
of 0. With this extra notation, there are simply more rules. Likewise,
the flat representation is more fine-grained, identifying fewer rules with
each threshold. The results are strikingly on a par with each other,
indicating that the similarity method is more important than the rep-
resentation of discontinuous material.

Looking at tables 17 and 18, the results are slightly clearer for the

34 / LiLT volume 4, issue 3 April 2011

Threshold Rules Unused Ungeneralizability
0 3083 3034 98.4%
1 4558 4477 98.2%
2 5706 5593 98.0%
3 6630 6484 97.8%
4 7389 7215 97.7%
5 8061 7847 97.3%

43,705 29,163 25,983 89.1%

TABLE 15 Whole daughter ungenerablizability with a flat representation,
without function labels (development data)

Threshold Rules Unused Ungeneralizability
0 4814 4718 98.0%
1 6768 6616 97.8%
2 8151 7947 97.5%
3 9234 8982 97.3%
4 10,130 9831 97.1%
5 10,904 10,558 96.8%

43,602 31,681 28,392 89.6%

TABLE 16 Whole daughter ungenerablizability with a discontinuous
representation, without function labels (development data)

bigram method, where we observe a better ungeneralizability rate when
using explicit discontinuities. We conjecture, however, that the bigram
method works marginally better with explicit discontinuities because
many local sequences involving the placement of discontinuous material
are rarely found in new data.

Threshold Rules Unused Ungeneralizability
0 1478 1388 93.9%
2 2896 2716 93.8%
4 3785 3548 93.7%
6 4640 4359 93.9%
8 5307 4975 93.7%
10 5902 5530 93.7%

16,742 29,163 25,983 89.1%

TABLE 17 Bigram ungenerablizability with a flat representation, without
function labels (development data)

Detecting Ad Hoc Rules for Treebank Development / 35

Threshold Rules Unused Ungeneralizability
0 1794 1694 94.4%
2 3481 3284 94.3%
4 4593 4331 94.3%
6 5585 5264 94.3%
8 6347 5975 94.1%
10 7068 6652 94.1%

19,541 31,681 28,392 89.6%

TABLE 18 Bigram ungenerablizability with a discontinuous representation,
without function labels (development data)

In addition to ungeneralizable rules, these methods turn up phrasal
types which could have been assigned more intenal structure in an-
other annotation scheme. For example, as the TIGER scheme set out
to “annotate only the common minimum” (Brants et al., 2002), prepo-
sitional phrases have a variety of dependents, and we find cases such
as PP → APPR PIAT ADJA ADJA NN PROAV (where APPR is the
preposition).
With function labels The results for the same data, but with func-
tion labels included, are presented in tables 19-22. For the whole daugh-
ters method, we observe essentially the same numbers, while for the
bigram method, ungeneralizability scores go from around 94% to 96%.
This can partly be attributed to a higher baseline: adding function la-
bels makes each rule rarer, resulting in a higher overall number of rules
and a higher overall ungeneralizability rate. It seems that the bigram
method benefits more by including more information in a rule: more
specific categories lead to more specific bigrams and thus a greater
chance of detecting an anomalous sequence.

Threshold Rules Unused Ungeneralizability
0 4907 4829 98.4%
1 7112 6982 98.2%
2 8767 8592 98.0%
3 10,024 9797 97.7%
4 11,129 10,863 97.6%
5 12,013 11,702 97.4%

43,664 36,571 33,170 90.7%

TABLE 19 Whole daughter ungenerablizability with a flat representation,
using function labels (development data)

36 / LiLT volume 4, issue 3 April 2011

Threshold Rules Unused Ungeneralizability
0 6979 6852 98.2%
1 9633 9430 97.9%
2 11,567 11,297 97.7%
3 13,009 12,668 97.4%
4 14,181 13,784 97.2%
5 15,155 14,703 97.0%

43,561 39,105 35,608 91.1%

TABLE 20 Whole daughter ungenerablizability with a discontinuous
representation, using function labels (development data)

Threshold Rules Unused Ungeneralizability
0 3896 3760 96.5%
2 6967 6695 96.1%
4 8988 8628 96.0%
6 10,594 10,161 95.9%
8 11,715 11,218 95.8%
10 12,723 12,155 95.5%

16,742 36,571 33,170 90.7%

TABLE 21 Bigram ungenerablizability with a flat representation, using
function labels (development data)

Threshold Rules Unused Ungeneralizability
0 4501 4347 96.6%
2 7927 7628 96.2%
4 10,180 9775 96.0%
6 11,989 11,509 96.0%
8 13,242 12,697 95.9%
10 14,433 13,812 95.7%

19,541 39,105 35,608 91.1%

TABLE 22 Bigram ungenerablizability with a discontinuous representation,
using function labels (development data)

Test data
To confirm our results, we select one group of settings from the de-
velopment data to work with the TIGER corpus. Using function labels
clearly led to higher ungeneralizability rates, but it is less clear whether
the flat representation or the discontinuous representation is better, as
the rates are nearly identical for similar numbers of identified rules.

Detecting Ad Hoc Rules for Treebank Development / 37

Looking at the final row of tables 21 and 22, however, we see that the
baseline for the flat representation is lower, meaning that a higher per-
centage of rules are used. Identifying unused rules at the same rate is
actually better for the flat method, given that there is a greater overall
chance of a rule being used. Thus, we report results on the test data for
a flat representation with function labels, for both the whole daughters
and bigram methods, as in tables 23 and 24. These tables show that
the results hold for the test data.

Threshold Rules Unused Ungeneralizability
0 4907 4845 98.7%
1 7112 7004 98.5%
2 8767 8605 98.2%
3 10,024 9811 97.9%
4 11,129 10,873 97.7%
5 12,013 11,714 97.5%

43,664 36,571 33,158 90.7%

TABLE 23 Whole daughter ungenerablizability with a flat representation,
using function labels (test data)

Threshold Rules Unused Ungeneralizability
0 3896 3778 97.0%
2 6967 6722 96.5%
4 8988 8656 96.3%
6 10,594 10,164 95.9%
8 11,715 11,216 95.7%
10 12,723 12,162 95.6%

16,742 36,571 33,158 90.7%

TABLE 24 Bigram ungenerablizability with a flat representation, using
function labels (test data)

7 Related work
Work on flagging anomalous rules in treebanks has focused mainly on
detecting errors in treebanks; a broad overview of this work can be
found in chapter 1 of Dickinson (2005). Ule and Simov (2004) provide
one example of work on detecting anomalous tree structures. To find
the most unexpected tree nodes, Ule and Simov (2004) use information
about the type of a node, the (grand)parent of that node, and the

38 / LiLT volume 4, issue 3 April 2011

children. An event which is unexpected, based on the χ2 metric, is
deemed likely to be an error. Ule and Simov are somewhat successful
in finding errors and other anomalies in a treebank of 580 sentences:
of the first 27 error candidates in a hand-checked test corpus, 11 were
errors and five were the result of unclear guidelines. The main idea for
their work is similar to the present work; a main difference lies in how
one defines an unexpected event. For example, they do not compare
daughters lists as we do.

For part-of-speech annotation, there is also work on anomaly detec-
tion. Eskin (2000) discusses how to use a sparse Markov transducer as
a method for anomaly detection. In this context, an anomaly refers to
a rare local tag pattern, found by using a mixture model to detect out-
liers. The method flags 7055 anomalies for the Penn Treebank, about
44% of which hand inspection shows to be errors. Similar to Eskin
(2000), Nakagawa and Matsumoto (2002) also search for exceptional
elements, using support vector machines (SVMs), with greater success.
Neither method has been adapted for syntactic annotation; if they are
modified to do so, one has to consider what features are relevant, for
which the present work provides some insight.

The idea of using odd POS sequences as indicators of problematic
data is not new. Květon and Oliva (2002) employ the notion of an
invalid bigram to locate corpus positions with annotation errors. An
invalid bigram is a POS-tag sequence that cannot occur in a corpus,
and the set of invalid bigrams is derived from the set of possible bigrams
occurring in a hand-cleaned sub-corpus, as well as from linguistic intu-
ition. Using this method, Květon and Oliva (2002) report finding 2661
errors in the NEGRA corpus (containing 396,309 tokens). Our use of
rare bigrams as flags of ad hoc rules can be seen as an extension of this
method. We do not limit ourselves to POS bigrams, however, using
whatever sequences of nonterminal/preterminal categories are on the
RHS of a rule, and no prior hand-cleaning is required.

An orthogonal line of research for detecting erroneous syntactic con-
structions stems from the variation n-gram method for finding inconsis-
tencies in annotation (Dickinson and Meurers, 2003, 2005a, Boyd et al.,
2008). The approach is based on a method for detecting strings which
occur multiple times in the corpus with varying annotation, the vari-
ation nuclei. Every variation detected in the annotation of a nucleus
is classified as either an annotation error or as a genuine ambiguity.
The basic heuristic for detecting annotation errors requires one word of
recurring context on each side of the nucleus. The nucleus with its re-
peated surrounding context is referred to as a variation n-gram. While
this is useful for detecting inconsistencies in different kinds of corpora,

Detecting Ad Hoc Rules for Treebank Development / 39

it misses certain types of more abstract errors, as it is string-based (see
Loftsson, 2009). Thus, it seems to be more difficult to apply the method
to detecting parser errors, whereas the approach explored here has a
much greater chance, as demonstrated by Dickinson (2010). Similarly,
Loftsson (2009) uses pattern matching based on a shallow parser to de-
tect errors, with good success. Instead of writing patterns, however, our
method automatically determines which syntactic units are erroneous.

The work presented in this paper also has connections to feature rep-
resentations in the parsing literature. Comparing entire valency struc-
tures approaches rule representations in an opposite direction as is done
with horizontal Markovization (Klein and Manning, 2003), though both
deal with rule generalizations. For horizontal Markovization, rules are
broken down into their component parts, conditioning each element on
some history within the same rule. This method allows a parser to posit
rules not originally observed within the training data. Using entire va-
lency structures is a complementary way of viewing the data. Indeed,
parse reranking models often employ more elaborate feature sets than
those employed in standard parsing (see, e.g., Charniak and Johnson,
2005). Collins and Koo (2005), for example, use bigrams of categories
as features. The current work shows that, while these properties (e.g.,
bigrams) can be used as model features, they have the potential to be
used more directly to detect problematic parses.

Additionally, extracting lexicalized grammars from a coarse treebank—
such as efforts to extract head-driven phrase grammar (HPSG) or com-
binatory categorial grammar (CCG) grammars (e.g., Miyao et al., 2004,
O’Donovan et al., 2005, Hockenmaier and Steedman, 2007)—involves
knowing whether the valency structures are correct. A potential benefit
of our method is that it can assist in the preprocessing of treebanks, for
example, detecting structures which lead to a failure of “grammar ac-
quisition” (Miyao et al., 2004). Sorting noisy from rare rules (or lexical
types) is important, as the number of lexical types continues to grow
when adding more treebank data (see figures 4 and 5 and surround-
ing discussion in Hockenmaier and Steedman, 2007). Future work can
also explore determining the extent to which our equivalence classes
correspond to basic structures in a more well-articulated formalism.

8 Conclusions

We have presented work on detecting ad hoc rules in treebanks, where
an ad hoc rule is an annotation error, covers an ungrammatical sen-
tence, reveals issues with the uniformity of an annotation scheme or
is simply a rule that does not generalize well. We started with a no-

40 / LiLT volume 4, issue 3 April 2011

tion of equivalence classes, the idea that different rules express the
same linguistic content, with respect to valency, and then moved on to
more general similarity metrics. We used two main methods, one rely-
ing on a comparison to complete representations of all other rules in a
grammar (the whole daughters method) and the other relying on more
local representations (the bigram method). The techniques are applica-
ble across different treebanks, including those containing discontinuous
constituents, and were shown to be effective in predicting which rules
are less likely to be used in new data.

The methods are independent of treebank, language, or annotation
scheme, and thus they can immediately be applied to new treebanks,
including dependency treebanks (Dickinson, 2010). Indeed, given that
ad hoc rule detection turns up a range of cases which provoke anno-
tation scheme discussions, the methods are ideal for treebank develop-
ment. Refining the notion of a grammar for annotation scheme-specific
constructions may even lead to more precise exploration of treebank
annotation.

One important area to consider in the future is that of porting gram-
mars from one domain to another (e.g., Foster and van Genabith, 2008,
Dickinson and Foster, 2009). The notion of generalizability predicts
that some rules will be more applicable across domains, and with our
methods, one has the potential to better determine which parts of a
grammar are more domain-specific.

Our methods are also applicable to detecting errors in automatically-
parsed data, by finding parsed rules which do not fit with the training
grammar (Dickinson, 2010). This can complement other work which
provides linguistically-interpretable error information about parsed
structures, such as the approach in Goldberg and Elhadad (2010),
which identifies structural biases of parsers to inspect trends in parser
errors.

Acknowledgments
I would like to thank Detmar Meurers, Adriane Boyd, Jennifer Foster,
and Sandra Kübler for discussion at various points throughout this
work, as well as the anonymous reviewers and the many individuals
who gave extremely helpful feedback at the venues where parts of this
work were first presented. Portions of this work were supported by the
National Science Foundation under Grant No. IIS-0623837.

References
Bender, Emily M., Dan Flickinger, Stephan Oepen, and Timothy Baldwin.

2004. Arboretum: Using a precision grammar for grammar checking in

References / 41

call. In Proceedings of the InSIL/ICALL Symposium: NLP and Speech
Technologies in Advanced Language Learning Systems. Venice, Italy.

Bies, Ann, Mark Ferguson, Karen Katz, and Robert MacIntyre. 1995. Brack-
eting Guidelines for Treebank II Style Penn Treebank Project . University
of Pennsylvania.

Bond, Francis, Sanae Fujita, Chikara Hashimoto, Kaname Kasahara, Shigeko
Nariyama, Eric Nichols, Akira Ohtani, Takaaki Tanaka, and Shigeaki
Amano. 2004. The hinoki treebank: Toward text understanding. In Pro-
ceedings of the 5th International Workshop on Linguistically Interpreted
Corpora (LINC-04), pages 7–10. Geneva.

Boyd, Adriane. 2007. Discontinuity revisited: An improved conversion to
context-free representations. In Proceedings of the Linguistic Annotation
Workshop (LAW 2007), pages 41–44. Prague, Czech Republic.

Boyd, Adriane, Markus Dickinson, and Detmar Meurers. 2008. On detecting
errors in dependency treebanks. Research on Language and Computation
6(2):113–137.

Brants, Sabine, Stefanie Dipper, Silvia Hansen, Wolfgang Lezius, and George
Smith. 2002. The TIGER treebank. In Proceedings of the First Workshop
on Treebanks and Linguistic Theories (TLT-02), pages 24–41. Sozopol,
Bulgaria.

Bunt, Harry. 1996. Formal tools for describing and processing discontinuous
constituency structure. In H. Bunt and A. van Horck, eds., Discontinuous
Constituency , pages 63–83. Berlin and New York: Mouton de Gruyter.

Charniak, Eugene. 1996. Tree-bank grammars. Tech. Rep. CS-96-02, De-
partment of Computer Science, Brown University, Providence, RI.

Charniak, Eugene and Mark Johnson. 2005. Coarse-to-fine n-best parsing
and maxent discriminative reranking. In Proceedings of the 43rd Annual
Meeting of the Association for Computational Linguistics (ACL-05), pages
173–180. Ann Arbor, MI, USA.

Collins, Michael and Terry Koo. 2005. Discriminative reranking for natural
language parsing. Computational Linguistics 31(1):25–69.

Daelemans, Walter, Antal van den Bosch, and Jakub Zavrel. 1999. Forgetting
exceptions is harmful in language learning. Machine Learning 34:11–41.

Daniels, Mike and W. Detmar Meurers. 2004. Gidlp: A grammar format
for linearization-based hpsg. In Proceedings of the Eleventh International
Conference on HPSG, pages 93–111. Stanford: CSLI Publications.

Déjean, Hervé. 2000. How to evaluate and compare tagsets? a proposal. In
Proceedings of the 2nd International Language Resources and Evaluation
Conference (LREC-00). Athens.

Dickinson, Markus. 2005. Error detection and correction in annotated cor-
pora. Ph.D. thesis, The Ohio State University.

Dickinson, Markus. 2006. Rule equivalence for error detection. In Proceedings
of the Fifth Workshop on Treebanks and Linguistic Theories (TLT 2006),
pages 187–198. Prague, Czech Republic.

42 / LiLT volume 4, issue 3 April 2011

Dickinson, Markus. 2008. Ad hoc treebank structures. In Proceedings of
ACL-08: HLT , pages 362–370. Columbus, Ohio.

Dickinson, Markus. 2009. Similarity and dissimilarity in treebank grammars.
In Current Issues in Unity and Diversity of Languages: Collection of the
papers selected from the 18th International Congress of Linguists (CIL18),
pages 1597–1611. Seoul.

Dickinson, Markus. 2010. Detecting errors in automatically-parsed depen-
dency relations. In Proceedings of the 48th Annual Meeting of the Associ-
ation for Computational Linguistics (ACL-10). Uppsala, Sweden.

Dickinson, Markus and Jennifer Foster. 2009. Similarity rules! exploring
methods for ad-hoc rule detection. In Proceedings of the Seventh Workshop
on Treebanks and Linguistic Theories (TLT-7), pages 147–158. Groningen,
The Netherlands.

Dickinson, Markus and Chong Min Lee. 2009. Modifying corpus annotation
to support the analysis of learner language. CALICO Journal 26(3):545–
561.

Dickinson, Markus and W. Detmar Meurers. 2003. Detecting inconsistencies
in treebanks. In Proceedings of the Second Workshop on Treebanks and
Linguistic Theories (TLT-03), pages 45–56. Växjö, Sweden.

Dickinson, Markus and W. Detmar Meurers. 2005a. Detecting errors in
discontinuous structural annotation. In Proceedings of the 43rd Annual
Meeting of the Association for Computational Linguistics (ACL-05), pages
322–329. Ann Arbor, MI, USA.

Dickinson, Markus and W. Detmar Meurers. 2005b. Prune diseased branches
to get healthy trees! how to find erroneous local trees in a treebank and
why it matters. In Proceedings of the Fourth Workshop on Treebanks and
Linguistic Theories (TLT-05), pages 41–52. Barcelona, Spain.

Dubey, Amit. 2004. Statistical Parsing for German: Modeling syntactic prop-
erties and annotation differences. Ph.D. thesis, Saarland University, Ger-
many.

Elworthy, David. 1995. Tagset design and inflected languages. In Proceedings
of the ACL-SIGDAT Workshop. Dublin.

Eskin, Eleazar. 2000. Automatic corpus correction with anomaly detection.
In Proceedings of the 1st Meeting of the North American Chapter of the
Association for Computational Linguistics (NAACL-00), pages 148–153.
Seattle, Washington.

Foster, Jennifer. 2007. Real bad grammar: Realistic grammatical description
with grammaticality. Corpus Linguistics and Linguistic Theory: Special
Issue on Grammar without Grammaticality 3(1):73–86.

Foster, Jennifer. 2010. “cba to check the spelling”: Investigating parser perfor-
mance on discussion forum posts. In Human Language Technologies: The
2010 Annual Conference of the North American Chapter of the Association
for Computational Linguistics, pages 381–384. Los Angeles.

References / 43

Foster, Jennifer and Josef van Genabith. 2008. Parser evaluation and the
bnc: Evaluating 4 constituency parsers with 3 metrics. In Proceedings of
LREC 2008 . Marrakech, Morocco.

Foth, Kilian and Wolfgang Menzel. 2006. Robust parsing: More with less.
In Proceedings of the Workshop on ROMAND 2006:Robust Methods in
Analysis of Natural language Data, pages 25–32.

Gazdar, Gerald, Ewan Klein, Geoffrey K. Pullum, and Ivan A. Sag. 1985.
Generalized Phrase Structure Grammar . Cambridge, MA: Harvard Uni-
versity Press.

Gildea, Daniel. 2001. Corpus variation and parser performance. In Proceed-
ings of the 2001 Conference on Empirical Methods in Natural Language
Processing (EMNLP-01). Pittsburgh, PA.

Goldberg, Yoav and Michael Elhadad. 2010. Inspecting the structural bi-
ases of dependency parsing algorithms. In Proceedings of the Fourteenth
Conference on Computational Natural Language Learning (CoNLL-2010).

Habash, Nizar, Ryan Gabbard, Owen Rambow, Seth Kulick, and Mitch Mar-
cus. 2007. Determining case in Arabic: Learning complex linguistic be-
havior requires complex linguistic features. In Proceedings of the 2007
Joint Conference on Empirical Methods in Natural Language Processing
and Computational Natural Language Learning (EMNLP-CoNLL), pages
1084–1092. Prague, Czech Republic.

Hall, Keith and Václav Novák. 2005. Corrective modeling for non-projective
dependency parsing. In Proceedings of the Ninth International Work-
shop on Parsing Technology (IWPT-05), pages 42–52. Vancouver, British
Columbia.

Han, Chung-hye, Na-Rare Han, Eon-Suk Ko, and Martha Palmer. 2002. De-
velopment and evaluation of a korean treebank and its application to nlp.
In Proceedings of the 3rd International Language Resources and Evaluation
Conference (LREC-02). Las Palmas, Canary Islands, Spain.

Hepple, Mark and Josef van Genabith. 2000. Experiments in structure-
preserving grammar compaction. In 1st Meeting on Speech Technology
Transfer . Seville, Spain.

Hinrichs, Erhard, Julia Bartels, Yasuhiro Kawata, Valia Kordoni, and Heike
Telljohann. 2000. The tübingen treebanks for spoken german, english, and
japanese. In W. Wahlster, ed., Verbmobil: Foundations of Speech-to-Speech
Translation, pages 552–576. Berlin: Springer.

Hockenmaier, Julia. 2003. Data and models for statistical parsing with Com-
binatory Categorial Grammar . Ph.D. thesis, The University of Edinburgh.

Hockenmaier, Julia. 2006. Creating a ccgbank and a wide-coverage ccg lex-
icon for german. In Proceedings of the 21st International Conference on
Computational Linguistics and 44th Annual Meeting of the Association
for Computational Linguistics (COLING-ACL-06), pages 505–512. Syd-
ney, Australia.

44 / LiLT volume 4, issue 3 April 2011

Hockenmaier, Julia and Mark Steedman. 2007. Ccgbank: A corpus of ccg
derivations and dependency structures extracted from the penn treebank.
Computational Linguistics 33(3):355–396.

Hogan, Deirdre. 2007. Coordinate noun phrase disambiguation in a genera-
tive parsing model. In Proceedings of the 45th Annual Meeting of the As-
sociation of Computational Linguistics (ACL-07), pages 680–687. Prague,
Czech Republic.

Hollingshead, Kristy, Seeger Fisher, and Brian Roark. 2005. Comparing and
combining finite-state and context-free parsers. In Proceedings of Human
Language Technology Conference and Conference on Empirical Methods in
Natural Language Processing (HLT-EMNLP-05), pages 787–794. Vancou-
ver, British Columbia, Canada.

Jackendoff, Ray. 1977. X’ Syntax: A Study of Phrase Structure. Cambridge,
MA: MIT Press.

Klein, Dan and Christopher D. Manning. 2003. Accurate unlexicalized pars-
ing. In Proceedings of the 41st Annual Meeting of the Association for
Computational Linguistics (ACL-03), pages 423–430. Sapporo, Japan.

Krotov, Alexander, Mark Hepple, Robert Gaizauskas, and Yorick Wilks.
1998. Compacting the penn treebank grammar. In Proceedings of the
36th Annual Meeting of the Association for Computational Linguistics and
17th International Conference on Computational Linguistics, Volume 1
(COLING-ACL-98), pages 699–703. Montreal, Quebec, Canada.

Kübler, Sandra. 2005. How do treebank annotation schemes influence pars-
ing results? or how not to compare apples and oranges. In Proceedings
of the International Conference on Recent Advances in Natural Language
Processing (RANLP-05). Borovets, Bulgaria.

Kübler, Sandra, Erhard W. Hinrichs, and Wolfgang Maier. 2006. Is it really
that difficult to parse german? In Proceedings of the 2006 Conference on
Empirical Methods in Natural Language Processing (EMNLP-06), pages
111–119. Sydney, Australia.

Květon, Pavel and Karel Oliva. 2002. Achieving an almost correct pos-tagged
corpus. In Text, Speech and Dialogue (TSD), pages 19–26.

Loftsson, Hrafn. 2009. Correcting a POS-tagged corpus using three comple-
mentary methods. In Proceedings of the 12th Conference of the European
Chapter of the ACL (EACL 2009), pages 523–531. Athens, Greece.

Marcus, M., Beatrice Santorini, and M. A. Marcinkiewicz. 1993. Building
a large annotated corpus of English: The Penn Treebank. Computational
Linguistics 19(2):313–330.

McClosky, David, Eugene Charniak, and Mark Johnson. 2006. Reranking
and self-training for parser adaptation. In Proceedings of the 21st Inter-
national Conference on Computational Linguistics and 44th Annual Meet-
ing of the Association for Computational Linguistics (COLING-ACL-06),
pages 337–344. Sydney, Australia.

References / 45

Metcalf, Vanessa and Adriane Boyd. 2006. Head-lexicalized pcfgs for verb
subcategorization error diagnosis in icall. Talk given at Workshop on In-
terfaces of Intelligent Computer-Assisted Language Learning (IICALL);
The Ohio State University; Columbus, OH.

Meurers, Walt Detmar. 2005. On the use of electronic corpora for theoretical
linguistics. case studies from the syntax of german. Lingua 115(1):1619–
1639.

Miyao, Yusuke, Takashi Ninomiya, and Jun’ichi Tsujii. 2004. Corpus-oriented
grammar development for acquiring a head-driven phrase structure gram-
mar from the penn treebank. In Proceedings of IJCNLP 2004 , pages 684–
693. Hainan Island, China.

Nakagawa, Tetsuji and Yuji Matsumoto. 2002. Detecting errors in corpora
using support vector machines. In Proceedings of the 17th International
Conference on Computational Lingusitics (COLING 2002), pages 709–715.
Taipei, Taiwan.

O’Donovan, Ruth, Michael Burke, Aoife Cahill, Josef van Genabith, and
Andy Way. 2005. Large-scale induction and evaluation of lexical re-
sources from the penn-ii and penn-iii treebanks. Computational Linguistics
31(3):329–365.

Oepen, Stephan, Dan Flickinger, and Francis Bond. 2004. Towards holis-
tic grammar engineering and testing—grafting treebank maintenance into
the grammar revision cycle. In Beyond Shallow Analyses—Formalisms and
Statistical Modelling for Deep Analysis (Workshop at The First Interna-
tional Joint Conference on Natural Language Processing (IJCNLP-04)).
Hainan, China.

Padro, Lluis and Lluis Marquez. 1998. On the evaluation and comparison
of taggers: the effect of noise in testing corpora. In Proceedings of the
36th Annual Meeting of the Association for Computational Linguistics and
17th International Conference on Computational Linguistics, Volume 2
(COLING-ACL-98), pages 997–1002. Montreal, Quebec, Canada.

Petrov, Slav, Leon Barrett, Romain Thibaux, and Dan Klein. 2006. Learning
accurate, compact, and interpretable tree annotation. In Proceedings of the
21st International Conference on Computational Linguistics and 44th An-
nual Meeting of the Association for Computational Linguistics (COLING-
ACL-06), pages 433–440. Sydney, Australia.

Plaehn, Oliver. 2004. Computing the most probable parse for a discontinuous
phrase structure grammar. In H. Bunt, J. Carroll, and G. Satta, eds.,
New Technologies in Parsing Technology , pages 91–106. Kluwer Academic
Publishers.

Przepiórkowski, Adam. 2006. What to acquire from corpora in automatic
valence acquisition. In V. Koseska-Toszewa and R. Roszko, eds., Seman-
tyka a konfrontacja jezykowa, tom 3 , pages 25–41. Warszawa: Slawistyczny
Ośrodek Wydawniczy PAN.

46 / LiLT volume 4, issue 3 April 2011

Rambow, Owen. 2010. The simple truth about dependency and phrase struc-
ture representations: An opinion piece. In Human Language Technologies:
The 2010 Annual Conference of the North American Chapter of the Asso-
ciation for Computational Linguistics, pages 337–340. Los Angeles, Cali-
fornia: Association for Computational Linguistics.

Rimell, Laura and Stephen Clark. 2008. Adapting a lexicalized-grammar
parser to contrasting domains. In Proceedings of the 2008 Conference on
Empirical Methods in Natural Language Processing (EMNLP-08), pages
475–484. Honolulu, Hawaii.

Rosén, Victoria, Koenraad de Smedt, Helge Dyvik, and Paul Meurer. 2005.
Trepil: Developing methods and tools for multilevel treebank construc-
tion. In Proceedings of the Fourth Workshop on Treebanks and Linguistic
Theories (TLT 2005), pages 161–172. Barcelona, Spain.

Santorini, Beatrice. 1990. Part-of-speech tagging guidelines for the Penn
Treebank project (3rd revision, 2nd printing). Tech. Rep. MS-CIS-90-47,
The University of Pennsylvania, Philadelphia, PA.

Sekine, Satoshi. 1997. The domain dependence of parsing. In Proceedings of
the Fifth Conference on Applied Natural Language Processing (ANLP-97),
pages 96–102. Washington, DC, USA.

Skut, Wojciech, Brigitte Krenn, Thorsten Brants, and Hans Uszkoreit. 1997.
An annotation scheme for free word order languages. In Proceedings of
the Fifth Conference on Applied Natural Language Processing (ANLP-97),
pages 88–95. Washington, DC, USA.

Ule, Tylman and Kiril Simov. 2004. Unexpected productions may well be
errors. In Proceedings of the 4th International Language Resources and
Evaluation Conference (LREC-04), pages 1795–1798. Lisbon, Portugal.

Vadas, David and James Curran. 2007. Adding noun phrase structure to
the penn treebank. In Proceedings of the 45th Annual Meeting of the As-
sociation of Computational Linguistics (ACL-07), pages 240–247. Prague,
Czech Republic.

van Noord, Gertjan and Gosse Bouma. 2009. Parsed corpora for linguistics. In
Proceedings of the EACL 2009 Workshop on the Interaction between Lin-
guistics and Computational Linguistics: Virtuous, Vicious or Vacuous? ,
pages 33–39. Athens.

Volk, Martin. 1996. Parsing with id/lp and ps rules. In Natural Language
Processing and Speech Technology. Results of the 3rd KONVENS Confer-
ence (Bielefeld), pages 342–353. Berlin: Mouton de Gruyter.

Voutilainen, Atro and Timo Järvinen. 1995. Specifying a shallow grammat-
ical representation for parsing p urposes. In Proceedings of the Seventh
Conference of the European Chapter of the Association for Computational
Linguistics (EACL-95), pages 210–214. Dublin, Ireland.

Wagner, Joachim, Jennifer Foster, and Josef van Genabith. 2007. A compara-
tive evaluation of deep and shallow approaches to the automatic detection

References / 47

of common grammatical errors. In Proceedings of the 2007 Joint Con-
ference on Empirical Methods in Natural Language Processing and Com-
putational Natural Language Learning (EMNLP-CoNLL), pages 112–121.
Prague, Czech Republic.

Zhao, Yanyan, Bing Qin, Shen Hu, and Ting Liu. 2010. Generalizing syntactic
structures for product attribute candidate extraction. In Human Language
Technologies: The 2010 Annual Conference of the North American Chapter
of the Association for Computational Linguistics (HLT-NAACL-10), pages
377–380. Los Angeles, California.

