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Córdoba, Yukie Nakao, Département Communication, Langues &
Entreprise, Ecole Centrale de Nantes, Gwen Christian

Abstract

We describe a series of experiments in which we start with English to
French and English to Japanese versions of a rule-based speech transla-
tion system for a medical domain, and bootstrap corresponding statisti-
cal systems. Comparative evaluation reveals that the statistical systems
are still slightly inferior to the rule-based ones, despite the fact that con-
siderable effort has been invested in tuning both the recognition and
translation components; however, a hybrid system is able to deliver
a small but significant improvement in performance. In conclusion, we
suggest that the hybrid architecture we describe potentially allows con-
struction of limited-domain speech translation systems which combine
substantial source-language coverage with high-precision translation.
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1 Introduction

This paper describes a series of experiments centered around MedSLT
(Bouillon et al., 2008a), a small/medium-vocabulary medical speech
translator designed for doctor-patient communication which uses a rule-
based architecture; the purpose of the experiments has been to compare
this architecture with more mainstream statistical ones. The original
motivation for using rule-based methods comes from considerations re-
garding the tradeoff between precision and recall. Specifically, medical
speech translation is a safety-critical domain, where precision is much
more important than recall. It is also important to note that this is a
domain where substantial quantities of training data are unavailable.
The question is how to use the very limited amounts of data at our
disposal to best effect. This is by no means an uncommon scenario in
limited-domain speech translation, and could in fact be regarded as the
norm rather than the exception.

It is intuitively not unreasonable to believe that rule-based methods
are better suited to the requirements outlined above, but the well-
known methodological problems involved in performing comparisons
between rule-based and statistical systems have made it hard to es-
tablish this point unambiguously. In an earlier study (Rayner et al.,
2005), we presented head-to-head comparisons between MedSLT and
an alternative which combined statistical recognition and an ad hoc
translation mechanism based on hand-coded surface patterns, showing
that the rule-based system performed comfortably better. It was, how-
ever, clear from informal comments we received that other researchers
in the field viewed these results sceptically. The basic criticism was that
the robust processing components were too much of a straw-man: more
powerful recognition or translation engines might conceivably have re-
versed the result.

In the new series of experiments, our basic goal has been to start with
the rule-based components and the corpus data used to construct them,
and then use the same resources, together with mainstream tools, to
bootstrap statistical processing components. In (Hockey et al., 2008),
we adapted and improved methods originally described in (Jurafsky
et al., 1995) to bootstrap a statistical recogniser from the original rule-
based one. More recently, in (Rayner et al., 2010) we used similar meth-
ods to bootstrap statistical machine translation models.

In the current paper, we combine the results of the previous two sets
of experiments to build a fully bootstrapped statistical speech transla-
tion system, which we then compare with the original rule-based one,
and also with a hybrid system which combines rule-based and statisti-
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cal processing. The rest of the paper is organised as follows. Section 2
presents background on the MedSLT system; Section 3 summarises the
earlier experiments on bootstrapped statistical recognition, and Sec-
tion 4 those on machine translation; Section 5 describes the new exper-
iments; and Section 6 concludes.

2 Background: the MedSLT System

MedSLT (Bouillon et al., 2008a) is a medium-vocabulary interlingua-
based Open Source1 speech translation system for doctor-patient medi-
cal examination questions, which provides any-language-to-any-language
translation capabilities for all languages in the set {English, French,
Japanese, Arabic, Catalan}. In what follows, however, we will only be
concerned with the pairs English → French and English → Japanese,
which we take, respectively, as representative of a close and distant
language-pair. All the experiments described were carried out us-
ing the 870-utterance recorded speech corpus from (Rayner et al.,
2005); this was collected using a protocol in which subjects played
the doctor role in simulated medical examinations carried out us-
ing the MedSLT prototype. A transcribed version of the data can
be found online at http://medslt.cvs.sourceforge.net/viewvc/
*checkout*/medslt/MedSLT2/corpora/acl 2005 transcriptions.
txt?revision=1.1. A brief examination of the corpus shows that it
is fairly noisy. We estimate that about 65–70% of it consists of clearly
in-domain and well-formed sentences, depending on the exact defi-
nitions of these terms2, with much of the remaining portion being
out-of-domain or dysfluent.

Language Vocab WER SemER
English 447 6% 11%
French 1025 8% 10%
Japanese 422 3% 4%

TABLE 1 Recognition performance for English, French and Japanese
headache-domain recognisers. “Vocab” = number of surface words in source

language recogniser vocabulary; “WER” = Word Error Rate for source
language recogniser, on in-coverage material; “SemER” = semantic error
rate (proportion of utterances failing to produce correct interlingua) for

source language recogniser, on in-coverage material. Differences in
vocabulary size are mainly related to differences in inflectional morphology.

1LGPL license; https://sourceforge.net/projects/medslt/
261% of the corpus is within the coverage of the current English grammar.
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Both speech recognition and translation are rule-based. Speech
recognition runs on the commercial Nuance 8.5 recognition platform,
with grammar-based language models built using the Open Source3

Regulus compiler. As described in (Rayner et al., 2006), each domain-
specific language model is extracted from a general resource grammar
using corpus-based methods driven by a seed corpus of domain-specific
examples. The seed corpus, which typically contains between 500 and
1500 utterances, is then used a second time to add probabilistic weights
to the grammar rules; this substantially improves recognition perfor-
mance (Rayner et al., 2006, §11.5). Performance measures for speech
recognition in the three languages where serious evaluations have been
carried out are shown in Table 1.

The run-time architecture is summarised in Figure 1. At the start
of the processing chain, the recogniser produces a set of N-best speech
hypotheses. Each of these is parsed, using the source-language gram-
mar, into a source-language semantic representation in AFF (Almost
Flat Functional Semantics; (Rayner et al., 2008)), a type of key-value
formalism that we will shortly describe in more detail. Since the source-
language grammar has also been used to build the recogniser’s language
model, all recognition hypotheses are guaranteed to be within its cov-
erage.

The set of AFF source-language representations is translated by a
set of rules into corresponding interlingual forms, again represented in
AFF. The space of well-formed interlingua representations in MedSLT
is also defined by a Regulus grammar (Bouillon et al., 2008a); this
grammar is designed to have minimal structure, so checking for well-
formedness can be performed very quickly, and hypotheses which give
rise to non-wellformed interlingua can safely be discarded. Use of this
“highest-in-coverage” rescoring algorithm is found to reduce semantic
error rate during speech understanding by about 10% relative (Bouil-
lon et al., 2008b). After rescoring, the top interlingua representation in
the rescored list is translated by a second set of rules into a target lan-
guage AFF representation. A target-language Regulus grammar, com-
piled into generation form, turns the target representation into one or
more possible surface strings, after which a set of generation preferences
picks one out.

In parallel, the interlingua is also translated, using the same meth-
ods, into the source-language (“backtranslated”). The backtranslation
is shown to the source-language user, who has the option of aborting
processing if they consider that speech understanding has produced

3LGPL license; https://sourceforge.net/projects/regulus/
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an incorrect result. If they do not abort, the target language string
is displayed and realised as spoken output. This mode of operation is
absolutely essential in a safety-critical application like medical exam-
ination. Since translation errors can have serious or even fatal conse-
quences, doctors will only consider using systems with extremely low
error rates, where they can directly satisfy themselves that the system
has at least correctly understood what they have said before attempting
to translate it. This also motivates use of restricted-domain, as opposed
to general translation.

The interlingua grammar is built in such a way that the surface forms
it defines can be used as human-readable glosses, which means that the
interlingua takes on many of the characteristics of an artificial pivot
language. We will make heavy use of this idea in what follows. The
usual form of the “interlingua pivot language” is modelled on English.
It is, however, straightforward to parametrize the grammar so that the
pivot language form can also be generated with word-orders based on
those occurring in other languages; in particular, we will also use one
based on Japanese.

Table 2 shows examples of English domain sentences together with
translations into French and Japanese and pivot language representa-
tions in English-based and Japanese-based format. Note the very simple
structure of the pivot language, which is in most cases just a concate-
nation of text representations for the underlying AFF representation;
since AFF representations are unordered lists, they can be presented in
any desired order. Thus the AFF for the first example, “does the pain
usually last for more than one day” is the following structure:4

[null=[utt_type,ynq],
arg1=[symptom,pain],
null=[state,last],
null=[tense,present],
null=[freq,usually],
duration=[>=,1],
duration=[timeunit,day]]

The English-oriented pivot form, “YN-QUESTION pain last PRESENT
usually duration more-than one day” presents these elements in the
order given here, which is approximately that of a normal English ren-
dition of the sentence. In contrast, the Japanese-oriented form, “more-
than one day duration pain usually last PRESENT YN-QUESTION”
makes concessions to standard Japanese word-order, in which the sen-

4AFF representations and pivot language forms have been slightly simplified for
presentational reasons.
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Eng does the pain usually last for more than one day
Eng int YN-QUESTION pain last PRESENT usually duration

more-than one day
Fre la douleur dure-t-elle habituellement plus d’un jour

Jap int more-than one day duration pain usually
last PRESENT YN-QUESTION

Jap daitai ichinichi sukunakutomo itami wa tsuzuki masu ka
Eng does it ever appear when you eat

Eng int YN-QUESTION you have PRESENT ever pain
sc-when you eat PRESENT

Fre avez-vous déjà eu mal quand vous mangez
Jap int eat PRESENT sc-when ever pain

have PRESENT YN-QUESTION
Japanese koremadeni tabemono wo taberu to itami mashita ka

Eng is the pain on one side
Eng int YN-QUESTION you have PRESENT pain

in-loc head one side-part
Fre avez-vous mal sur l’un des côtés de la tête

Jap int head one side-part in-loc pain
have PRESENT YN-QUESTION

Jap atama no katagawa wa itami masu ka

TABLE 2 English MedSLT examples: English source sentence,
English-oriented interlingua pivot form, rule-based translation into French,
Japanese-oriented interlingua pivot form and rule-based translation into

Japanese.

tence normally ends with the verb (here, tsuzuki masu), followed by
the interrogative particle ka.

Similarly, in the second example from Table 2, we see that the
English-oriented pivot form puts “sc-when” (“subordinating-conjunction
when”) before the representation of the subordinate clause; the Japanese-
oriented pivot form puts “sc-when” after, mirroring the fact that the
corresponding Japanese particle, to, comes after the subordinate clause
tabemono wo taberu. This is literally “food OBJ eat”, i.e. “(you) eat
food”; note that the Japanese-oriented pivot form suppresses the per-
sonal pronoun “you”, again following normal Japanese usage. In Sec-
tion 4, we will demonstrate how useful the different forms of the in-
terlingua turn out to be. The basic point is to be able to split up
statistical translation into pieces where source and target always have
similar word-order.

The next two sections presents the results of earlier experiments, in
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which statistical components were bootstrapped by using the rule-based
ones to create training data.

3 Bootstrapping statistical language models

As described in Section 2, the Regulus platform constructs grammar-
based language models in a corpus-driven way. This, in principle, en-
ables a fair comparison between grammar-based language modelling
(GLM) and statistical language modelling (SLM), since the “seed cor-
pus” used to extract the specialised grammar can also be used to train
an SLM. There are, however, several ways to implement the idea. The
simplest method is to use the seed corpus directly as a training cor-
pus for the SLM. A more subtle approach is described in (Jurafsky
et al., 1995, Jonson, 2005); one can randomly sample the grammar-
based language model to generate arbitrarily large amounts of corpus
data, which are then used as input to the SLM training process. In
(Hockey et al., 2008), we showed that a statistical recogniser trained
from a suitable version of a randomly generated corpus outperformed
the one generated from the 948-utterance seed corpus.

Table 3 summarises the main results, contrasting different methods
for building the SLM training corpora; the first line, for the GLM built
using the “seed” corpus, is intended to provide a reference point. Line
2 shows the SLM built from the “seed” corpus. The other recognisers
were all built from GLM-generated training corpora of the same size.
The versions vary in three ways. The training corpora are of different
sizes; we generate them using either plain CFG generation or PCFG
generation, where the probabilistic weights attached to the CFG gram-
mar are obtained by using the seed corpus a second time; finally, we
may or may not use the interlingua to filter the results of generation.

We look first at lines 3 to 6. The corpus used in line 4 was cre-
ated by starting with an initial CFG-generated set of 500K utterances,
and applying interlingua-based filtering; the fact that more than 99%
of the data is discarded shows that plain CFG generation produces
very low-grade data. For purposes of comparison, line 3 contains re-
sults for a corpus created from an equally large sample of unfiltered
CFG-generated data. Evidently, although filtering helps, CFG genera-
tion does not deliver interesting performance; results are much worse
than with the seed corpus. In contrast, lines 5 and 6 show results for
PCFG-generated corpora, which, at least in terms of WER, are better
than the seed corpus. All the remaining experiments were consequently
performed with PCFG-generated data.

When SLMs are trained on human-generated data, performance usu-
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Version size WER SER
1 seed corpus GLM 948 21.96% 50.62%
2 seed corpus SLM 948 27.74% 58.40%
3 CFG/unfiltered 4 281 49.0% 88.4%
4 CFG/filtered 4 281 44.68% 85.68%
5 PCFG/unfiltered 4 281 25.98% 65.31%
6 PCFG/filtered 4 281 25.81% 63.70%
7 PCFG/unfiltered 16 619 24.84% 62.47%
8 PCFG/filtered 16 619 23.80% 59.51%
9 PCFG/unfiltered 497 798 24.38% 59.88%
10 PCFG/filtered 497 798 23.76% 57.16%

TABLE 3 Recognition performance for SLMs trained on different types of
generated data. “Size” = number of utterances in training set; “WER” =
Word Error Rate on test set of in-coverage and out of coverage material;

“SER” = sentence error rate on test set of in-coverage and out of coverage
material. GLM results included for comparison

Version size WER SER
1 seed corpus GLM 948 7.00% 22.37%
2 seed corpus SLM 948 14.40% 42.02%
3 PCFG/unfiltered 16 619 14.13% 46.11%
4 PCFG/filtered 16 619 12.76% 40.86%
5 1500K PCFG/unfiltered 497 798 12.35% 40.66%
6 1500K PCFG/filtered 497 798 11.25% 36.19%

TABLE 4 Recognition performance as training set size increases, on
in-coverage material only. “Size” = number of utterances in training set;

“WER” = Word Error Rate; “SER” = sentence error rate
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ally improves for some time as more data is added. A common rule
of thumb when building commercial SLM-based systems is that one
should aim to collect about 20 000 utterances. Lines 7 to 10 presents
results for SLMs trained off PCFG-generated corpora of increasing size.
In order for the filtered and unfiltered SLMs to be trained from similar
amounts of data, the unfiltered data file was truncated to match the
number of items left in the filtered file. So, for example, when 50K of
data was generated, 16 619 items were left after filtering, and the first
16 619 items of the unfiltered file were used for training the unfiltered
SLM. The amount of training data was incremented until addition of
training data no longer resulted in an improvement in the error rates.

The recognisers trained on filtered data continued to improve as we
increased the size of the training set. The best recogniser trained on
unfiltered data had lower WER than the “seed corpus” SLM recogniser.
SER, however, was almost the same between these two versions, and the
difference was not significant5. The best recogniser trained on filtered
data did better, and outscored the “seed corpus” SLM on both WER
and SER. The difference on SER, however, was again not significant.

One methodological problem with the above figure is that compar-
isons between GLM and SLM models depend heavily on the mix of
in-coverage and out of coverage data encountered in the test data. Per-
formance of both models is generally dismal on out-of-coverage data,
and consequently not very interesting; performance on in-coverage data
is often a more useful metric. Table 4 summarises performance on the
in-coverage subset of the data. Two points are worth noting. First, as
expected, restriction to in-coverage data increases the difference be-
tween the GLM recogniser and the others in terms of both WER and
SER; for both metrics, we see a relative decrease of over 35% between
results for the GLM and the best of the other versions. The second
point, rather more interestingly, is that the best SLM version is now
the one created from filtered PCFG-generated data (line 6). This ver-
sion is significantly better than the “seed corpus” SLM.

To sum up the argument for this section, the methodology of boot-
strapping an SLM recogniser by using the GLM to generate more corpus
data does succeed in significantly improving recognition performance.
Even the best SLM version is, however, still inferior to the GLM, and
substantially inferior to it on in-coverage data.

5All significance results in this section are in terms of the McNemar sign test.
The details are presented in (Hockey et al., 2008).
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4 Bootstrapping statistical translation models

In (Rayner et al., 2009, 2010), we adapted the methods from Section 3
to bootstrap Statistical Machine Translation (SMT) models from the
original rule-based ones; a similar experiment, with a large-vocabulary
system, is reported in (Dugast et al., 2008). As above, we started by
using the source-language grammar to randomly generate a large cor-
pus of data. We then passed the result through the interlingua-based
translation components to create bicorpora for these language pairs; in
the experiments reported here, we used English → French and English
→ Japanese versions of the system, representing a close and a distant
translation pair respectively. We then used the resulting bicorpora to
train SMT models with the common combination of Giza++, Moses
and SRILM (Och and Ney, 2000, Koehn et al., 2007, Stolcke, 2002),
training the models with MERT (Och, 2003) on a held-out portion of
data

The obvious way to create the SMT models, explored in (Rayner
et al., 2009), is simply to use the aligned source/target corpus as train-
ing data. As the paper shows, this gives surprisingly poor performance.
We experimented with various ways to evaluate translation quality for
the bootstrapped SMT, and found that a simple and effective one was
to determine how often the SMT’s translation differed from the origi-
nal RBMT’s, on examples which were not in the training data; human
judges confirmed that the differences were hardly ever in the SMT’s
favour, and frequently showed up errors. (Differences pointed to SMT
errors in about 40 to 60% of the examples for English → French, and
about 60 to 80% of the examples for English → Japanese, depending on
the strictness of the judge). On the “agreement” metric, performance
topped out at around 67% agreement for English → French, and a dis-
mal 27% for English → Japanese; addition of more generated training
data failed to improve the results.

The unimpressive figures are perhaps not as strange as they first
appear. Most SMT performance results are on tasks where vocabu-
lary is much larger, but where demands on translation quality are also
much lower. A translation which would be quite acceptable in Google
Translate would often be completely unacceptable in the context of the
safety-critical medical speech translation task. None the less, we felt
that there had to be some way to get better performance. In (Rayner
et al., 2010), we showed that it was possible to do this by once again
exploiting the “pivot language” forms described in Section 2, which
provide a text form of the interlingua. This allows us to construct
aligned corpora which pair source or target sentences with pivot lan-
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guage forms, and train separate SMT models for translation from source
language to pivot language, and from pivot language to target language.

Splitting up SMT translation to make it go through the interlingua
pivot language turns out to offer several advantages. To begin with, the
original RBMT system’s ability to offer useful performance on noisy
speech input depends crucially on the interlingua: as described earlier,
each sentence produced by the speech recogniser is first translated into
the interlingua, and then “backtranslated” into the source language,
so that the user can if necessary abort the translation before a target
language sentence is produced. If SMT is performed in two stages, using
the text form of the interlingua as a pivot language, it is possible to
employ the same basic architecture.

The interlingua/pivot language can also be exploited in other ways.
First, if the SMT decoder is set to produce N-best output, we can use
the interlingua/pivot grammar as a knowledge source to reorder N-best
hypotheses as we do in recognition, preferring ones which the grammar
defines as well-formed. Second, when the source and target languages
have widely different word-orders, SMT translation can be made far
more accurate when it is broken up into several processing steps. Here,
we were partly inspired by Xu and Seneff (2008), who address the
problem arising from word-order differences when translating from En-
glish to Chinese. They first perform RBMT from the English source to
an intermediate representation they call “Zhonglish”, in which English
words are arranged in a Chinese order; they then use an SMT to pro-
duce the final Chinese result. For English to Japanese translation, we
have a similar set of modules, but connected in a different order: we
first use SMT to translate English into the English-oriented pivot lan-
guage, then reformulate the result into a Japanese-ordered “Japlish”,
and finally use RBMT to generate Japanese.

In our concrete experiments, we created, as before, a randomly gener-
ated English corpus of 500K utterances, and passed it through English
→ French and English → Japanese versions of the RBMT system, stor-
ing the source, target and pivot language results. The pivot language
was saved both in the English-oriented and the Japanese-oriented for-
mats (cf. Table 2). We then trained separate SMT models for the pairs
English → English-oriented pivot language, English-oriented pivot lan-
guage → French, and Japanese-oriented pivot language → Japanese;
for comparison purposes, we also trained models for English → French
and English → Japanese. We experimented with several different ways
of combining these resources, of which we finally used two. The first
of these, which involves only statistical processing, was the following
pipeline:
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1. Translation from English to English-oriented pivot language using
SMT, with the decoder set to produce N-best output (N was set
to 15);

2. Rescoring of the N-best output to choose the highest well-formed
string, where one was available;

3. If the target is Japanese, reformulation from English-oriented
pivot language to Japanese-oriented pivot language;

4. Translation from the appropriate form of pivot language to the
target language using SMT

We will call this pipeline Bootstrapped-Statistical-SMT. As shown
in (Rayner et al., 2010), Bootstrapped-Statistical-SMT massively
decreases the error rate for the difficult pair English → Japanese, com-
pared to the näıve method of training a single SMT model. The key
advantage is that SMT translation, which is very sensitive to differ-
ences in word-order, only has to translate between languages with sim-
ilar word-orders. Even in the relatively easy pair English → French, a
substantial performance gain was achieved by interposing the N-best
rescoring step. On in-coverage input, both bootstrapped pivot-based
SMT systems were able to reproduce the translations of the original
rule-based systems on about 79% of the data; recall that the corre-
sponding figures for the näıve method were 67% for English → French
and 27% for English → Japanese.

Performance can be further improved if we move to a hybrid method,
which we will call Bootstrapped-Hybrid-SMT, where the last step
in the preceding pipeline is replaced by RBMT translation from the
pivot to the target language. With this further enhancement, the boot-
strapped system is able to reproduce the RBMT’s translations on about
87% of the data for both target languages.

Though considerably improved, the bootstrapped SMT systems are
thus still not quite as good as the original RBMT ones on in-coverage
data. The payoff, of course, is that the bootstrapped systems are also
able to translate out-of-coverage sentences. When evaluated on the out-
of-coverage portion of the test set (358 text utterances), 81 sentences
(23%) produced a backtranslation judged to be correct. Of these 81 sen-
tences, 76 (94%) were judged to produce good translations for French,
and 71 (88%) for Japanese when we used the pure bootstrapped statisti-
cal translation method. With the hybrid method, 75 of the 81 sentences
which gave a good backtranslation also produced a French translation,
and all of these translations were judged correct. For Japanese, all 81
sentences produced a translation, and 77 of these translations (95%)
were judged correct.
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5 Combining recognition and translation

The preceding sections have described how we were able to bootstrap
good robust versions of the original speech recognition and machine
translation components, using only the original, very small training
set of 948 sentences. We now combine these modules to simulate a full
bootstrapped statistical speech translation system and a hybrid version
which combines rule-based and statistical processing.

Specifically, we took the best version of the bootstrapped statistical
recogniser from Section 3 and the best versions of the pure bootstrapped
statistical translation model (Bootstrapped-Statistical-SMT) and
the hybrid bootstrapped statistical translation (Bootstrapped-Hy-
brid-SMT) from Section 4. We first ran the 870-utterance speech
corpus from (Rayner et al., 2005) through the bootstrapped statistical
recogniser, and then passed the results through both the bootstrapped
statistical translation models. We define the three notional speech
translation systems we will compare as follows. Rule-Based (Figure 1)
is the original rule-based system, i.e. rule-based recognition followed by
rule-based translation. The Full-Bootstrapped-Statistical system
(Figure 2) is the composition of the bootstrapped statistical recogniser
and Bootstrapped-Statistical-SMT. Full-Bootstrapped-Hybrid
(Figure 3) is a system which uses Rule-Based if this produces a non-
null translation, and otherwise backs off to the composition of the boot-
strapped statistical recogniser and Bootstrapped-Hybrid-SMT.

For all three configurations, we also produced rule-based backtrans-
lations (cf. Section 2), in order to be able to simulate normal use of
the system. The material was annotated by human judges as follows.
The English → English backtranslations were evaluated by two native
English judges; they were asked to mark the backtranslation as good
if they were sufficiently sure of its correctness that they would have
considered, in a real medical examination dialogue, that the system
had understood and should be allowed to pass its translation on to
the patient. The English → French and English → Japanese transla-
tions were evaluated by two native speakers of French and two native
speakers of Japanese respectively, who were all fluent in English. They
were presented with a spreadsheet containing three columns, in which
the first column was the source English sentence, and the other two
were the output of the orginal rule-based system and the output of
the bootstrapped system. If one of the systems produced no output,
for whatever reason, this was marked as “NO TRANSLATION”. The
order of presentation of the two systems was randomised, so that the
judge did not know, for any given line, which version was shown in the
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statistical translation are all bootstrapped from the correspoding rule-based
components. Note that the selected English interlingua form is considered

both as text (for statistical translation to Japanese) and as AFF (for
rule-based back-translation to English).
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English speech
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Speech hypotheses (text)

Japanese form (AFF)
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RULE-BASED
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speech 

recognition
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translation
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translation hyps
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Surface interlingua (text)
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FIGURE 3 The Full-Bootstrapped-Hybrid version of the
English-to-Japanese system combines modules from the Rule-Based

version (Figure 1) and the Full-Bootstrapped-Statistical version
(Figure 2). Run-time processing follows the Rule-Based path if that
produces a well-formed interlingua form, otherwise backs off to the
Full-Bootstrapped-Statistical path. In both cases, translation from

interlingua to target is performed using Rule-Based modules.
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second column and which in the third. If there were two translations,
the judges were instructed to mark one of them if they considered that
it was clearly superior to the other. If one of the translations was null
they were instructed to mark the non-null translation as preferable if
they considered that it would be useful in the context of the medical
speech translation task.

We used the data and the judgments to compare Full-Bootstrapped-
Statistical and Full-Bootstrapped-Hybrid against Rule-Based.
The results are summarised in Table 5; we present figures for each
comparison both on the complete dataset, and also on the subset for
which backtranslation produced a result judged as good. The last three
columns give the results first for each judge separately, then for the
cases where the two judgements coincide.

Comparison Judged by
Version 1 Version 2 Judge1 Judge2 Agree

English → French (all data)
1 Rules Bootstrapped 261–43 259–43 247–33
2 Hybrid Rules 22–81 28–56 26–55

English → French (good backtranslation only)
3 Rules Bootstrapped 69–25 71–27 62–20
4 Hybrid Rules 17–2 15–3 15–2

English → Japanese (all data)
5 Rules Bootstrapped 125–98 149–84 104–62
6 Hybrid Rules 26–75 22–78 14–67

English → Japanese (good backtranslation only)
7 Rules Bootstrapped 61–25 64–30 48–18
8 Hybrid Rules 12–1 15–2 10–0

TABLE 5 Comparisons between different versions of the English → French
and English → Japanese MedSLT systems. The result NN–MM indicates

that the judge(s) in question considered that the first version gave a clearly
better result NN times, and the second version a clearly better result MM
times. Differences significant at P < 0.05 according to the McNemar test

are marked in bold.

Although statistical processing, as usual, adds robustness, we can
see that it suffers from two major problems. As lines 1 and 5 show,
the statistical system, without backtranslation, is much worse than the
rule-based one, since it frequently produces incorrect translations due
to bad recognition. (The statistical system almost always produces a
translation; the rule-based one fails to do so about on about 30% of
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the data, since rule-based recognition most often fails altogether on
out-of-coverage data, as opposed to producing a nonsensical result).
With backtranslation added, lines 3 and 7 at least demonstrate that
this first problem disappears, and the result is closer. However, we still
have the second problem; there are long-distance dependencies which
the statistical algorithms are unable to learn. For example, in French,
both judges agreed that there were 55 cases where rule-based process-
ing gave a better result than statistical, mostly due to more accurate
recognition or translation. There were 26 cases which went the opposite
way, with statistical processing better than rule-based: in most of these,
rule-based processing gave no result, and statistical a good result. For
both language pairs, the figures suggest that the lack of long-distance
constraints is more important than the added robustness.

The hybrid system, however, is able to deliver a better result than
the rule-based one when backtranslation is added; according to the
McNemar test, the improvement is significant at P < 0.01. This posi-
tive result appears to depend heavily on the fact that the hybrid system
uses rule-based translation to translate from the interlingua/pivot level,
both for producing the backtranslation and the target translation. The
statistical recognition and translation components add recall, but con-
siderably reduce precision. By checking backtranslations, however, the
user can catch cases where the statistical processing result has resulted
in incorrect interlingua/pivot language, and be confident that the re-
maining examples will be correctly translated into the target language.

6 Summary and discussion

We have described a series of experiments in which we started with a
rule-based speech translation system for a medical speech translation
system, and used it to bootstrap a corresponding statistical system.
We see two main conclusions, one positive and one negative. On the
negative side, the statistical system is still inferior to the rule-based one,
despite the fact that considerable ingenuity has been invested in tuning
both the recognition and translation components. It is conceivable that
a more subtle way of creating the statistical system might succeed in
producing a system whose accuracy was comparable to that of the rule-
based version. At the moment, though, the evidence at our disposal
suggests that, if we are making a straight choice between rule-based
and statistical, then rule-based systems are more appropriate for this
kind of task.

We are aware that our conclusions are at odds with the currently
prevailing wisdom; it is clear that some of our colleagues view our re-
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sults with suspicion. When we have discussed the methodology with
these people, there have been two main objections. The first is that
large-vocabulary recognition, trained off general corpora, may give bet-
ter recognition than the domain-specific recognition used here. This is
possibly true, though our sentence error rate on in-domain utterances
is in fact quite competitive. But the argument, even if correct, is basi-
cally irrelevant. Even when we filter to keep only examples with good
backtranslations, thus in effect simulating near-perfect recognition, we
find that the statistical system is at a severe disadvantage. The critical
issues, in other words, lie in translation rather than recognition.

The second criticism we have received is that the SMT is being
trained on RBMT output, and hence can only be worse; a common ar-
gument is that a system trained on human-produced translations should
yield better results. It is entirely plausible that an SMT trained on this
kind of data would perform better on material which is outside the
coverage of the RBMT system. In our domain, however, the important
issue is precision, not recall; what is critical is the ability to translate ac-
curately on material that is within the constrained language defined by
the RBMT coverage. The RBMT engine gives very good performance
on in-coverage data, as has been shown in other evaluations of the
MedSLT system, e.g. (Rayner et al., 2005). Human-generated transla-
tions would sometimes, no doubt, be more natural than those produced
by the RBMT, and there would be slightly fewer outright mistransla-
tions. But the primary reason why the SMT is doing badly is not that
the training material contains dubious translations, but rather that the
SMT is incapable of correctly reproducing the translations it sees in the
training data. Even in the easy English → French language-pair, the
SMT often produces a different translation from the RBMT. It could
a priori have been conceivable that the differences were uninteresting,
in the sense that SMT outputs different from RBMT outputs were as
good, or even better. In fact, this is not true; when the two translations
differ, although the SMT translation can occasionally be better, it is
usually worse. Thus the SMT system’s inability to model the RBMT
system points to a real limitation.

If the SMT had instead been trained on human-generated data, its
accuracy on in-coverage material could only have improved substan-
tially if the SMT for some reason found it easier to learn to reproduce
patterns in human-generated data than in RBMT-generated data. This
seems unlikely. The SMT is being trained from a set of translation pairs
which are guaranteed to be completely consistent, since they have been
automatically generated by the RBMT; the fact that the RBMT system
only has a small vocabulary should also work in its favour. If the SMT
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is unable to reproduce the RBMT’s output, it is reasonable to assume
it will have even greater difficulty reproducing translations present in
normal human-generated training data, which is always far from con-
sistent, and will have a larger vocabulary.

As already noted, it is of course possible that some better way of do-
ing SMT would resolve the technical issues that have emerged here, and
allow us to train a more accurate model. Until this has been concretely
demonstrated, however, the theoretical question of whether statistical
systems may eventually be capable of outperforming rule-based ones
on this kind of task seems to us rather uninteresting. We would pre-
fer to focus on the positive result: the architecture we have developed
here already provides a straightforward recipe for constructing hybrid
limited-domain speech translation systems which are better than either
type of pure system.

In the experiments described above, the statistical components are
bootstrapped from the rule-based ones, and have only slightly more cov-
erage; even so, they are able to make the hybrid system significantly
more robust. It would be possible to use the same methods to combine
a rule-based speech translation system with broad-coverage recogni-
tion and translation modules, as long as they are able to map source
language into the interlingua, and this could result in a substantial in-
crease in robustness. Since the interlingua has a text realisation as the
pivot language, the construction is in principle quite straightforward;
just as we have done in the current system, use of rule-based meth-
ods for backtranslation and translation to the target language means
that the hybrid system can retain all the rule-based system’s precision.
There are some non-trivial problems — in particular, it is not imme-
diately clear how to create the data needed to train a broad-coverage
SMT module for the source language/pivot language pair — but if they
can be solved it should be possible to create a very interesting type of
application. We hope to investigate these questions further.
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