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Round the decay
Of that colossal wreck, boundless and bare,
The lone and level sands stretch far away.

Shelley (1818) Ozymandias

The philosophers have merely interpreted the world in various ways;
the point, however, is to change it.

Marx (1845) Theses On Feuerbach, XI

In every �eld in which progress beckons, romantics and revolutionaries
�nd themselves in an uneasy alliance. The role of the romantics is to
de�ne the often unattainable goal. That of the revolutionaries is to
advance towards it. Each needs the other, and constantly fears they
are forsaken. Sometimes they are right.

Theoretical linguists are the romantics of our �eld: They seek to
understand language for its own sake, intuitively, and on its own terms.
Computational linguists are the revolutionaries: They want to make
things work better. How are they getting along, these days?

∗But were Afraid to Ask
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1 That Colossal Wreck

From the 1960s until the mid 1970s, there was almost complete theo-
retical unanimity among linguists, psycholinguists, and computational
linguists. This consensus was founded on some formal results due to
Chomsky (1959a,b), showing that �competence� (or what Marr (1977)
called the �Theory of the Computation� for natural language) could
not be exactly captured using �nite-state machines or even context-free
grammars. The consensus model of competence was transformational
generative grammar, which the linguists developed, the computational
linguists found elegant ways of parsing (Woods 1973, Church (this is-
sue); Kay (this issue)), and the psychologists used as a basis for the
empirical study of human processing. The consensus model of perfor-
mance was to pursue a single syntactic analysis, under the guidance of
parsing �strategies� amounting to ordering on rules (Fodor et al. (1974))
to deal with the ambiguity in the competence grammar, supplemented
by backtracking or �reanalysis� in cases (by assumption, rare) where
such strategies led the processor into a blind alley. There was consider-
able shared interest in rare events like garden-path sentences, crossing
dependencies, parasitic gaps, and inverse quanti�er scope.

This consensus was immensely productive, leading to important in-
sights into the nature of the processor and the interactions among mod-
ules including syntax, semantics, and context, and gave rise to a number
of ingenious behavioral and physiological measures of transient process-
ing load, some of which are still in use today (Garrett 2007).

The consensus soon fell apart, however, largely because of early
disagreements about the role of semantics in the competence theory
(Chomsky 1972), the recognition of the unconstrained power (and con-
sequent weak explanatory force) of structure-dependent transforma-
tional rules (Peters and Ritchie 1973), and the realization of the huge
amount of syntactic ambiguity inherent in human-scale grammars (and
the consequent severity of the problem of search in parsers for those
grammars�Martin et al. 1981, Church and Patil 1982). Many for-
mal linguists in the transformationalist mainstream have reacted by
disavowing any concern with limiting expressive power. Other, more
semantically- or psycholinguistically- oriented linguistic theories, in-
cluding Praguian Functional Generative Description (FGD, Sgall et al.
1986; Haji£ová, this issue), Word/Dependency Grammar (Hudson 1984,
2007), Role and Reference Grammar (RRG, Van Valin 1993), Con-
struction Grammar (Goldberg 1995, 2006, Croft 2001, Cognitive Gram-
mar (Langacker 2008), and Optimality-Theoretic Grammar (Legendre
et al. 2001), either allow arbitrarily powerful transformation-like rules
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in derivational syntax, or talk in terms of global principles and con-
straints whose relation to speci�c formal or computational models is
left unspeci�ed. As a result, many contemporary linguistic accounts of-
fer very little that psychologists and computational linguists can use.
The psycholinguists themselves have split into two mutually antago-
nistic groups. One group is politely agnostic about the competence
theory, talking either in terms of global constraints and heuristics that
are largely independent of any speci�c theory of grammar (e.g. Mac-
Donald 1994), or in terms of surface parsing strategies (e.g. Fodor 1998,
Frazier and Clifton 1996), or a mixture of the two (e.g. Ferreira 2003,
2007) . The other camp vigorously denies the psychological relevance
of linguistic theory and the competence-performance distinction itself,
seeking explanations at connectionist or neurocomputational levels (e.g.
Christiansen and Chater 2001).

The minority of linguists who have retained a concern with limit-
ing expressive power and/or supporting computation have meanwhile
been forced to invent their own grammar formalisms, such as Lexical-
Functional Grammar (LFG, Bresnan 1982), Generalized Phrase Struc-
ture Grammar (GPSG, Gazdar et al. 1985), Lexicalized Tree-Adjoining
Grammar (LTAG, Joshi and Schabes 1992), Head-Driven Phrase Struc-
ture Grammar (HPSG, Pollard and Sag 1994), and Combinatory Cat-
egorial Grammar (CCG, Steedman 2000).

A theoretical linguistics in this fragmented state might seem not to
have much to o�er in the way of models to computational linguistics.
(We ask for bread. They give us empty categories.) And, in fact, with
the exceptions mentioned above, computational linguists have mostly
reverted to �nite-state and context-free approximations to human lan-
guage, often ignoring linguistically problematic phenomena like rela-
tivization and coordination entirely, and without exception depending
upon parallel-searching algorithms and machine-learnable probabilistic
parsing models to deal with the huge grammars and proliferating num-
bers of analyses that are needed for robust practical applications on a
large scale.

Ask not what linguistics can do for computational linguistics. Ask
�rst what computation can do for linguistics.

2 What Linguistic Theory has to Learn from

Computation

The most important fact about language is, of course, that just about
every phenomenon�from lexical items, and parts-of-speech, to word-
order, constructions, and speech-act types�exhibits a power-law dis-
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tribution, according to which a very small proportion of the relevant
categories account for the vast majority of observed events, with the
remainder constituting a �long tail� of double-exponentially rarer types.
The linguists know it as Zipf's Law of word-frequencies (cf. Kay and
Church, this issue), which says that if we group words by frequency,
and assign each group a rank from most frequent to least, then the
words at any rank are roughly twice as frequent as the words at the
next rank. (For example, in the Brown corpus (Francis and Ku£era
1964), the most frequent word �the� is almost exactly twice as frequent
as the second, �of�, accounting respectively for around 7% and 3.5% of
word-tokens. At the other extreme, about half the words in the corpus
occur exactly once.)

Linguists don't often talk about Zipf's law these days. It is the rare
events that interest them, because those are the events that can be used
to discriminate between alternative theories of the language system.
However, this standpoint may encourage a distorted view of the system
as a whole. Forgetting Zipf's Law may encourage one to ignore the
problem of sparseness in the data one does have.

For example, in the '60s it was possible to doubt the existence of
languages with OS basic word order for the transitive clause�that
is, with the object preceding the subject (Greenberg 1963:76). How-
ever, language genera with all six possible orderings of the elements
V(erb), S(ubject) and O(bject) turn out to fall on an almost perfectly
power law-shaped frequency distribution (Haspelmath et al. 2005).1

Linguists just hadn't looked hard enough at the long tail. Given the
quite small number of known languages, there must be similar gener-
alizations which the data will always be too sparse to test. (Cinque's
2005 generalization of Greenberg's Universal 20, concerning the possi-
ble orders of the elements Det, Num, Adj and N in the nounphrase,
which is based on a survey of 350 languages, may well be such a case.)

It is therefore worth noting a couple of properties of computation-
ally practical grammars that might cause us to question whether the
grammars proposed by theoretical linguists are yet ready to help com-
putational NLP.

2.1 Real Grammars are Large

Human-scale grammars of the size that is needed to read the newspaper
or have a contentful conversation are very large indeed. For example,

1 It is important to count language genera (e.g. Germanic, Celtic, etc.) rather than
languages per se. Of course, with only six types to play with, the tail is truncated
(although we should note that around 20% of language genera cannot be assigned
a single dominant order).
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the context-free phrase-structure (CF-PS) base grammar that Collins
(2003) induced from the human-annotator-labeled Penn Wall Street
Journal Treebank (WSJ, Marcus et al. 1993), using around 50 Part-of-
Speech (POS) labels as lexical categories, has around 12,000 PS rule
types. Other, more radically lexicalized, grammars for the same corpus
typically have fewer (between roughly 1000 and 3000) rules, at the
expense of a larger number (between around 500 and 1300) of more
informative lexical categories (Hockenmaier and Steedman 2007; cf.
Miyao and Tsujii 2005). A number of (usually somewhat smaller, but
comparable) grammar-based parsers for linguistic formalisms such as
LFG (Riezler et al. 2001) and HPSG (Baldwin et al. 2002) have been
hand-built on a large scale.

Even grammars of this size are small by human standards. We know
for certain that there are entire construction-types that are unrepre-
sented in the million or so words of labeled WSJ training data, and the
datasets associated with the hand-built parsers. Such numbers are to
be contrasted with the even smaller rule sets that are typically adduced
to cover the fragments addressed in formal linguistic grammars, such
as the 26 rules listed in Chomsky 1957 or the 80 or so in Gazdar et al.
1985.2

Of course, this discrepancy might just mean that the computational
linguists are simply being obtuse, willfully missing the generalizations
concerning linguistic structures that the linguists have sought all along.
It is certainly the case that the linguists' grammars include some of the
most interesting rules. However, those who have tried to extend the
linguists' general rules to support wide coverage have generally found
themselves condemned to listing endless exceptions and lexical idiosyn-
crasies (see Gross 1978 for a case in point, or Friedman 1971). It seems
equally possible natural grammars are structured more like traditional
grammars such as Huddleston and Pullum (2002) or Kennedy (1882)�
that is, large, lexically and morphologically anchored, and thereby li-
censed for idiosyncrasy and exception, more like the computationally-
oriented lexicalized grammar-formalisms and parsers listed above.

None of this is particularly surprising, in view of the way the attested
languages have been shaped historically. Nor, of course, does it call
into question the truth at some level of abstraction of the theoretical
linguists' generalizations. But it means that wide-coverage grammars
induced by computational linguists from data are unlikely to embody
those generalizations in other than a statistically approximate sense.

2These numbers should be taken as merely indicative of orders of magnitude.
Both linguistic and computational grammars include schemas and metarules that
make exact counts problematic.
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It should also make us ask what the generalizations of theoretical
linguistics are about. Notions like �subjacency� and �binding condition�
seem have more to do with the notions �possible construction� or �pos-
sible lexical head� than with that of �possible language.� As such, even
such basic linguistic notions as constituency and dependency (for both
of which the traditional criteria are very weak) may be better thought
of as primarily semantic, rather than derivational-syntactic.

If such notions are semantic, and such generalizations concern the
universal language of logical form (whose existence and accessibility to
children seems to be the sine qua non for human language acquisition,
and which therefore must be independent of any linguistic word-order),
the present emphasis in non-computational linguistic theories of gram-
mar on underlying structural description may be misplaced. What we
need instead is a theory of surface derivational grammar, directly re-
lated to a universal inventory of constructions such as control, binding,
relativization, and conjunction, as was originally proposed by Gazdar
1981.

Of course, derivations in such surface grammars must deliver logical
forms compositionally. However, this observation is of limited utility,
because we know next to nothing about the natural language of logical
form, except a) that it can be derived easily from the surface grammars
of all languages, and b) that it supports inference with an incredible
facility, even when quanti�ers and negation are involved, for the kinds
of sentences that are actually found in corpora.

None of the standard linguistic semantic formalisms yet have ei-
ther of these properties. The scopal ambiguity of quanti�ers and other
operators in these formalisms has instead led both linguists and com-
putationalists to entertain proliferating structure-changing operations
of (covert) movement (May 1985), type-changing (Hendriks 1993), and
tree transformation (Hobbs and Shieber 1987), of exactly the same non-
monotone kind that the computational linguists have been so eager to
eliminate in syntactic parsing.

If the above is anywhere near the truth, then the theory of syntax
itself needs radical overhaul. We need grammars that directly support
low-complexity derivation of a considerable variety of surface construc-
tions, and that monotonically determine compositional logical forms
in a logical language whose form is to be �ontologically promiscuous�
(Hobbs 1985) and determined by convenience for surface-compositional
derivation.

This is the reverse of the methodology standard in non-computational
linguistic semantics, which is to choose some familiar, ready-made, log-
ical language such as �rst-order logic, case-frames, or whatever, and
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tolerate whatever complexity in syntax it takes to derive appropriate
formulæ from sentences. However this alternative approach o�ers the
great promise of allowing easy inference of entailment relations on the
basis of surface forms, of the kind implicit in proof-theoretic calculi like
the Aristotelian Syllogistic, and recently revived in a di�erent form for
tasks like �textual entailment� by MacCartney and Manning (2007).

Such a move would also o�er a way of dealing with a second lesson
for linguistics from computational NLP:

2.2 Real Grammars are Very Ambiguous

By the mid '90s, when the machines got big enough and fast enough to
actually try parsing with realistically-sized grammars, it became clear
that the huge degree of lexical and derivational ambiguity found in
all languages would swamp any known parsing technique (Charniak
1993:16), even using those low-polynomial time algorithms that had
been discovered in the seventies for the CF case (Harrison 1978). This
discovery directed attention away from the parsing algorithms them-
selves, and towards the problem of providing guidance to limit search
in such algorithms, via �language models� based on frequency counts of
events in labeled data sets like Penn WSJ. Among such parsing models,
the most successful are those which use quasi-semantic �head dependen-
cies�, as between a verb and the head-noun of a given argument, for
example (Magerman 1995, Collins 1997; see Klein and Manning 2003
and Petrov and Klein 2007 for a dissenting view).

These models work as well as they do because they incorporate a
very helpful mixture of semantic information related to notions like
�subcategorization� and �case-frame�, and world knowledge, such as the
frequent conjunction of ��sh� and �chips�. (The reason they don't work
better than they do is that they arenecessarily built on the basis of
laboriously human-labeled datasets like the Penn Treebank, which are
known to be far too small for the purpose.)

Such models are at least as important as the grammar in assign-
ing the correct analysis. While linguists (and psycholinguists) tend to
think of sentences as usually having at most two analyses, computa-
tional linguists know there there are standardly thousands and in some
cases millions of syntactically legal analyses of even moderately long
sentences, and that some guidance in search is essential.

Experience with such models again suggests that theoretical linguists
may need to question some of the assumptions they make concerning
the structure of linguistic theory. For example, most treebank gram-
mars for English omit number agreement from the grammar, and show
little if any improvement if such a mechanism is added. They can
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do so because the parsing model favors dependencies between subject
and verb head-words that agree over those that do not. Of course, this
strategem lets us down in cases such as a series of pipes and a pressure-

measuring chamber which record the rise and fall of the water surface,
where agreement is crucial to correct attachment of the relative clause
(Rimell et al. 2009:815). However, it also has the amiable e�ect of mak-
ing the treebank grammars �open-ended�, to borrow a term from Mark
Johnson elsewhere in this issue. This makes them robust in the face
of agreement mismatches like the following, which are quite common
in speech and in corpora, and are tolerated by experimental subjects
(Quirk et al. 1972, Bock and Miller 1991, Franck et al. 2002):

The cost of the improvements have not yet been estimated.

Another anomaly for which responsibility might better be assigned
to the performance parsing model than to grammar proper arises from
certain �island conditions�, including the Complex NP Constraint of
Ross (1967), as Collins (2003:590) points out.

2.3 For a New Theoretical Linguistics

The above discussion suggests that the linguistic theory of grammar
needs to be modi�ed in several respects. In particular:

a. Syntactic operations must apply to local, rather than unbounded,
domains;

b. Syntactic derivation must be monotonic and surface-compositional
to semantic logical form;

c. Semantic logical form must support entailment directly.

Some candidates for such grammars, mostly developed in collabo-
ration with computational linguists, and often realised more or less
directly in large-scale parsers, have already been mentioned, including
LFG, GPSG, LTAG, HPSG, and CCG. However, none yet exhibits all
of these properties, least of all in semantics.

If the linguists can �x these problems, and deliver something a bit
more usable in the way of syntactic and semantic theory than they o�er
right now, then computational linguists will have a lot to learn from
them, for they too are in deep trouble, for reasons to be discussed next.

3 What Computational Linguistics has to Learn from

Linguistics

Computational linguists also are painfully familiar with power law dis-
tributions and Zipf's Law. Such skewed distributions are what make
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machine learning for natural language processing di�cult, and di�er-
ent from standard machine learning based on Gaussian distributions.
Zipf's Law also means that the key to the �rst 80-90% of performance
on any evaluable task lies in capturing the few most frequent event
types. Fortunately, known machine learning techniques are very good
at learning tasks where the necessary information can be found in fre-
quent events. In fact, in many cases, machine learning can be relied on
to decide for itself what categories or event types optimally encode this
information, gratifyingly reducing even further the ease and turnaround
time per experiment and/or product enhancement.

3.1 Computational Linguistics Without Linguistics?

Because computers have grown exponentially bigger and faster accord-
ing to Moore's Law, at a rate greater than that at which we can do
experiments with machine learning techniques, natural language pro-
cessing research has been through a period of explosive growth in what
might be called �computational linguistics without linguistics�, concen-
trating on the �short head� of most frequent events susceptible to ma-
chine learned models, and ignoring the long tail of individually expo-
nentially less frequent events. For example, the dominant factor in im-
proving commercial speech recognition in recent years has been Moore's
Law, allowing training and accessing much larger hidden Markov mod-
els. Although Moore's law is widely recognized as no longer applying
to single processors, the strongly parallelizable nature of training for
HMMs and the alternative discriminative classi�ers means that this
improvement can be expected in principle to continue.

However, there are limits inherent to low-level language modeling
which may begin to be felt quite soon. The amount of data that is
needed to produce a just-noticeable improvement in performance mea-
sures such as word error rate also increases exponentially with the level
of performance, even for such basic tasks as HMM speech recognition
(Gauvain et al. 1994, Lamel et al. 2002). Moore (2003) shows that
extrapolating this increase to estimate the amount of training mate-
rial that would be required to attain human levels of performance,
near zero-percent word error rate, leads to the prediction of datasets of
around 1M hours of speech.

Such datasets are impossibly large. Even collecting 1M words of
speech of adequate quality is a challenge. By comparison, commercial
HMM speech recognition seems to be trained on datasets of from one
to ten thousand hours. Even then, deriving the model is a huge com-
putation, requiring massive parallelization. Scaling such a process by
two or three orders of magnitude seems incredible.
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The necessary datasets not only scale exponentially with perfor-
mance, but also with the complexity of the models themselves. For ex-
ample, for tasks that are typically addressed using higher-order Markov
models, such as statistical machine translation (SMT), the datasets
required grow exponentially with the size of the n-grams themselves.
Callison-Burch (2007:83) shows that, while the quality of translation in-
creased (not surprisingly) with n in an n-gram SMT model, the amount
of training data to learn the �rst 30% of source-language n-grams
present in a testset increased from order 10 words for unigrams to
order 10 for bigrams, 10 for trigrams, and 10 for tetragrams. Brants
et al. (2007:864) show that an n-gram set for n up to 5 continues to
grow exponentially with exponentially increasing amounts of training
material up to trillions of words. The resulting set included 56% of all
pentagrams in a test set for a linear increase of BLEU score per section
of the training data.3

Brants et al. also show that learning and inference on the basis of
such models is a problem in its own right, calling for massive parallelism
and sophisticated techniques for compressing models or pushing the
search/inference problem o�-line.

These numbers strongly suggest that there will never be large enough
datasets and computational resources for the currently most successful
engineering-based methods to scale to human levels of performance�
especially in the case of SMT, where Brants et al. show that available
resources of bilingual data have already been exhausted, even for the
most populated language pairs.

Zipf's Law means that natural language corpora have a �self-similar�
property.

This property of natural language data shows up in parser perfor-
mance in relation to the size of the training set. For example, Hocken-
maier and Steedman (2007:388) show that most of the most frequent
category types and rule types in a lexicalized CCG treebank grammar
have been encountered in the �rst 20% of the data�that is, in the �rst
200K words of a 1M word treebank (see �gure 1).4

Fong and Berwick (2008:n.14) make a related point concerning the
rate of increase in evaluation scores with amount of training data for
Collins' parser. However, they are probably wrong to attribute the self-
similarity property to the speci�c nature of the Penn Treebank. It is

3The slope of the linear increase was lower for web text than more controlled
sources�see Brants et al. �gure 5 and note 10.

4The di�erent curves are for di�erent low frequency cut-o�s f of between 0 and
4 counts of each category/rule type, and are included to show that the growth in
category types is not just due to noise.
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FIGURE 1 Growth of lexical category types and instantiated rule types in a
lexicalized treebank grammar (from Hockenmaier and Steedman 2007)

text itself that is self-similar.5

This self-similarity property means that what treebank parser in-
duction algorithms are learning in the initial steeply-rising phase (be-
sides the most frequent lexical entries), is the probability distribution
over frequent category types such as those of transitive and intransitive
verbs, control verbs, and/or the associated rules-types. These are the
most general facts about the language. They are the facts that dominate
any global evaluation measure such as the widely-used Parseval/Eval-b
measure, or dependency recovery rates. To the extent that they are
represented in the data, the algorithm learns them very e�ciently and
quickly.

In the later phase, what the grammar induction algorithm is learning
from the data (besides better counts of the most frequent events) is
mainly new lexical items and rules of already-seen types, together with
their head dependencies, and a few much rarer novel category- and rule-
types. Since Zipf's Law tells us that half of them only occur once in the
training data, they are unlikely to occur in the (typically, much smaller)
test set. (Error analyses suggest that about half of all parser errors
in lexicalized grammar parsers arise from missing lexical entries, and
the other half arise from the weakness of the head dependency model.
Again, one million words of labeled data is not enough to induce a
reliable parser for text of this nature.) The global measures are therefore
by their nature much less sensitive to these details, which a�ect the

5A small proportion of the text in the Penn WSJ corpus does in fact consist of
literal repetition, due to the process of construction of newspaper text. (For example,
the WSJ �What's News� section, which is included, repeats the �rst paragraph of
each story that it indexes�see discussion by Webber (2009).) However, this is not
the source of the e�ect noted by Fong and Berwick.
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evaluation very little.6

To the extent that treebank comprising a greater diversity of genres
might be expected to contain a somewhat wider variety of construc-
tions, rather than merely more diverse, but necessarily even sparser,
content words, it will give us a better grammar (although we must
take care that it is not at the expense of the strength of the model).
Questions are a good example of a completely general construction that
is underrepresented in the Wall Street Journal�see Clark et al. 2004.
However, such a treebank will still be self-similar, yielding learning
curves like those in Figure 1, under the iron hand of Zipf's Law.

It follows, of course, that we would need an order of magnitude more
labeled data�another ten million or so words of treebank�to make any
signi�cant impact on overall performance. Even that would not yield a
su�cient approximation to human performance.

No-one is likely to give us an order of magnitude more expert-labeled
data. Unless someone works out how to use �crowd-sourcing� for gram-
matical annotation (as Callison-Burch 2009 has for SMT training data),
or �nds a way to use user-generated correction data for the same pur-
pose (as Google does to train its spell-checker and speech recognition),
it is likely that computational NLP needs some help with theory from
linguists.

4 The Way Forward

These numbers should remind us that the informativity of events and
event-types concerning the nature of systems as a whole is unrelated
to their frequency. (In many other spheres of active inquiry, such as
physics, the necessity of looking at rare events in order to arrive at
a true theory�that it is the exception that proves (or disproves) the
rule�is taken for granted.)

This is bad news for the future of natural language processing with-
out linguistics. Of course, it remains possible that purely engineering
solutions, such as �fth or sixth-order Markov models learned over ter-
abytes of data, may be able to solve the problem by brute force after
all�say by the use of randomized algorithms investigated by Talbot and
Osborne 2007. Computational linguists will certainly keep trying. But
machine learning is not designed to learn from rare but information-
laden events. If we can only get the linguists to step up to the plate, it
is they who could tell us what class of computations the models should
operate over, what types are involved, and what a natural semantics

6Of course, this is as much an indictment of the standard bracket- or dependency-
recovery-based global evaluation measures as anything (Rimell et al. 2009).
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looks like. Machine learning will then apply, to make such computa-
tions practicable (as in Headden et al. 2009) by building the parsing
model. But it won't of itself give us a theory.

One way forward for computational linguistics might therefore be
to use our linguists in some less mindless way than paying them not
very much to label randomly selected data. Besides providing a basis
for building large parsing models, the treeebank labeling exercise of
Marcus et al. (1993) (which, as Mark Johnson reminds us elsewhere in
this issue, was designed by linguists) was originally motivated in part
to produce a more complete list of the most frequent constructions
and most important distributional facts than linguists seemed able to
provide unaided.7

However, now that we have established such basic facts, at least for
a few languages, the linguists themselves ought to be able to look at
them and tell us what the generalizations of these sets are, to enable
us to predict unseen word-category pairs and even unseen lexical types,
supporting better smoothing and more graceful degradation of perfor-
mance in the long tail, in a process of semisupervised learning which
has been called �linguist-in-the-loop�. This version of �Active Learning�
might be expected to be more successful than other versions that use
humans merely to propose or correct analyses of arbitrary unlabeled
data drawn from the same pool as the original training set. (Clark
et al. 2004, Rimell and Clark 2008 present successful active learning
of English question constructions in linguist-in-the-loop style. Blunsom
and Baldwin 2006 apply a similar approach to lexical acquisition for a
hand-built HPSG parser.)

Linguists might also tell us how to generalize our parsers to �low den-
sity� languages with little or no labeled data. However, for many lan-
guages, this programme would require a much more developed theory of
grammatical categories�perhaps in the guise of a probabilistic version
of �X-theory��than is currently available. It probably requires the de-
velopment of a theory of the semantic categories that underlie a much
larger set of morphosyntactic primitives than are explicit in European
languages, including such elements as nominal classi�ers, verbal eviden-
tials, discourse particles, and other exotica. However, while insightful
descriptions of such categories exist across substantial numbers of di-
verse languages (Dixon 1994, Aikhenvald 2000, 2004), such accounts
remain determinedly unformalized. It seems possible that machine-
learning techniques like those proposed by Snyder et al. (2009) might

7The treebank was also proposed as a standard test-set for evaluating hand-built
parsers for various grammar formalisms.
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be applied to this problem�cf. Levin and Bender in this issue.
One of the most useful and interesting applications for such a lan-

guage of natural logical form would be to annotate a corpus of child-
directed utterance with a deeper and more universal set of meaning
representations than is currently available (cf. Sagae et al. 2007), as a
step towards a more organic and robust form of semantically grounded
grammar acquisition pioneered by Zettlemoyer and Collins (2005).

These are long-term projects, and it is not currently clear whether
theoretical linguistics will take them on. If not, then computational
linguists will just have to do the job unaided. That would be a pity,
because they won't do it nearly as well.

5 Conclusion

A spectre is haunting linguistics. Probability is here to stay. All that
is solid melts into air, all that is holy is profaned, all changed, changed
utterly: a terrible beauty is born.

But computational linguistics still needs syntax and semantics to
secure the revolution for the future. If, right now, the romantics won't
deliver the vision, the revolutionists will have to change the world as
best they can. We have nothing to lose but our chains.
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