
Linguistic Issues in Language Technology – LiLT

Submitted, January 2012

Using hybrid logic for querying

dependency treebanks

Anders Søgaard

Søren Lind Kristiansen

Published by CSLI Publications

LiLT volume 7, issue 5 January 2012

Using hybrid logic for querying

dependency treebanks

Anders Søgaard, University of Copenhagen, Søren Lind

Kristiansen, University of Copenhagen

1 Introduction

Existing logic-based querying tools for dependency treebanks use first
order logic or monadic second order logic. We introduce a very fast
model checker based on hybrid logic with operators ↓,@ and A and show
that it is much faster than an existing querying tool for dependency
treebanks based on first order logic, and much faster than an existing
general purpose hybrid logic model checker. The querying tool is made
publicly available.

1.1 Querying dependency treebanks

Dependency treebanks are collections of natural language sentences an-
notated with dependency trees. A dependency tree provides an analysis
of a sentence in terms of grammatical functions, e.g. what is the sub-
ject of the main verb in the sentence. Dependency treebanks are used
to train data-driven dependency parsers that are used in text mining,
sentiment analysis, summarization, machine translation, etc.

More formally, a dependency tree for a sentence x = w1, . . . , wn is a
tree T = 〈{0, 1, . . . , n}, A〉 with A ⊆ V ×V the set of dependency arcs.
Each vertex corresponds to a word in the sentence, except 0 which
is the root vertex, i.e. for any i ≤ n 〈i, 0〉 6∈ A. Since a dependency
tree is a tree it is acyclic. A tree is projective if every vertex has a

1

LiLT Volume 7, Issue 5, January 2012.

Using hybrid logic for querying dependency treebanks.

Copyright c© 2012, CSLI Publications.

2 / LiLT volume 7, issue 5 January 2012

continuous projection, i.e. if and only if for every arc 〈i, j〉 ∈ A and
node k ∈ V , if i < k < j or j < k < i then there is a subset of arcs
{〈i, i1〉, 〈i1, i2〉, . . . , 〈ik−1, ik〉} ∈ A such that ik = k. In dependency
treebanks, the arcs are typically labeled with grammatical functions.
Later on, we will also think of the linear order of the words that label
the nodes of the graph as an unlabeled precedence relation.

Consider the following example:

subj obj

John likes strawberries

The dependency structure tells us that the word ’John’ is the subject
(subj) of the verb ’likes’, and that ’strawberries’ is its object (obj).

When linguists query collections of dependency trees, they typically
want to find examples of complex syntactic phenomena, or they want
to find the possible syntactic contexts of a particular phrase. Query lan-
guages for dependency treebanks are also used to validate treebanks.
Consequently, a query language should be expressive enough to check
for wellformedness and whether abstract linguistic principles are satis-
fied by all dependency trees. Finally, query languages may be applied
to the output of dependency parsers in error analysis.

We list three prototypical queries for further reference:

(1)Are there any sentences in which the object comes before the subject
which in turn comes before the verb, i.e. sentences in which the
object is topicalized, e.g. ’Strawberries John likes’?

(2)Are there any sentences without subjects?

(3)Are there any cyclic dependency structures?

1.2 Logics for dependency trees

Propositional dynamic logic (PDL) seems to be the natural query lan-
guage for trees without linear yields (Blackburn and Meyer-Viol, 1994),
but natural queries in trees with linear yields seem to require nominals
or intersection (Keller, 1993; Blackburn, 1994; Kracht, 1995). Consider
also the query in (3) above. Cyclicity is not definable in PDL, but
requires nominals or intersection.

Existing logic-based querying tools for dependency treebanks use
first order logic or monadic second order logic (Kepser, 2004), but these
logics have PSPACE-hard model checking problems. Since dependency
treebanks may be very big (> 1M words) and queries arbitrarily com-
plex, linear time model checking seems necessary. First order logic has
also been argued to be inadequate, since it cannot define transitive clo-

Using hybrid logic for querying dependency treebanks / 3

sures (Kepser, 2004). Monadic second order logic, on the other hand,
seems like shooting birds with cannons.

Hybrid logic with operators ↓,@ and A is in our view a more natu-
ral choice. It has linear time model checking (Franceschet and de Rijke,
2005; Lange, 2006; Lange, 2009), easily defines cyclicity and can dis-
tinguish directed acyclic graphs from their unraveled trees (Blackburn
et al., 2001). The logic is equivalent to PDL with nominals (Passy and
Tinchev, 1991), and we add regular expressions over propositional vari-
ables and Kleene stars over modalities as syntactic sugar.

1.3 This work

This work describes an implementation of dependency treebank query-
ing using hybrid logic with operators ↓,@ and A, henceforth HL-(↓
,@, A). The implementation is made publicly available with an online
interface and evaluated in a series of experiments. The paper is orga-
nized as follows:

Sect. 2 presents related work about logic-based querying of depen-
dency treebanks and related work on applying hybrid logic to verifica-
tion or querying problems. No one has to the best of our knowledge
used hybrid logics for querying dependency treebanks.

Sect. 3 introduces HL-(↓,@, A) and discusses its computational prop-
erties, incl. the complexity of model checking. We also show that queries
such as (1–3) are easily expressed in HL-(↓,@, A).

Sect. 4 describes our implementation of dependency treebank query-
ing using HL-(↓,@, A) formulas made publicly available with an online
interface.

Sect. 5 presents a series of experiments that compares the runtime
of our system to two baseline systems, a state-of-the-art dependency
treebank querying software (DTAG; Buch-Kromann, 2003) and a state-
of-the-art hybrid logic model-checker (HLMC; Franceschet and de Ri-
jke, 2005). We evaluate the three systems on two sets of one-operator
formulas of depth k ∈ {3, 5, 10, 25, 50}, e.g. A(A(A(A(A(φ))))) and on
formulas used to check acylicity of dependency trees. We use two de-
pendency treebanks in our experiments: Penn-III (Marcus et al., 1993)
for English and Talbanken05 (Nilsson et al., 2005) for Swedish. Penn-
III is one of the largest available treebanks with 50,000 sentences (∼
1M words), whereas Talbanken04 is rather small (∼ 200K words).

2 Related work

2.1 Treebank query languages

Common query tools for treebanks include CorpusSearch, ICECUP III
Wallis and Nelson (2000) and TGrep2, but as pointed out in Kepser

4 / LiLT volume 7, issue 5 January 2012

(2004) the query languages used in these tools are not even expres-
sive enough to perform arbitrary queries on context-free derivations.
They are, according to Kepser (2004), all subsumed by the existential
fragment of first order logic. Other more expressive logics that have
been introduced to characterize context-sensitive grammar formalisms
Reape (1994), Richter (2004) have model checking procedures with ex-
ponential runtime. The logics proposed in Reape (1994), Richter (2004)
are both extensions of HL-(↓,@, A). See Søgaard and Lange (2009) for
a polyadic dynamic logic specifically designed for linguistic theories in
which grammatical structures may contain set valued attributes, with
PSPACE-hard model checking, but an expressive linear time fragment.

DTAG Buch-Kromann (2003) is one of the most promising tools for
querying dependency treebanks. It uses first order logic with binary
relations for encoding user queries. It reads dependency treebanks in a
variety of formats and has a number of interesting features, incl. graph-
ical visualization of example sentences.

2.2 Querying with hybrid logic

The key concepts in hybrid logic date back to Arthur Prior, but were
revived in the mid-1990s (Blackburn and Seligman, 1995; Blackburn et
al., 2001). Most applications of this logic have been rather philosophical,
and most theoretical work has been devoted to satisfiability and proof
systems. Only recently researchers began to look into model checking
with hybrid logic (Franceschet and de Rijke, 2005; Lange, 2006; Lange,
2009). Since model checking with hybrid logic is a new area of interest,
there has to the best of our knowledge been almost no work on apply-
ing model checking with hybrid logic to practical problems, with the
exception of Hoareau and Satoh (2007, 2008).

Hoareau and Satoh (2007, 2008) use model checking with hybrid
logic in so-called location-aware software. In location-aware software,
physical space is organized in trees where nodes represent relevant
places. Queries can, for example, be:

(4)Where is the surgery?

(5)Where is the closest computer to the elevator?

(6)How to reach the roof?

Hybrid logics are used to name identified places. Since the hierar-
chical space graph forms a tree, there is no need to query for cycles.
Hoareau and Satoh (2007, 2008) implement a model checker for their
particular purposes in much the same way as we have done. They do
not, however, compare the efficiency of their system to state-of-the-art
systems in location-aware software.

Using hybrid logic for querying dependency treebanks / 5

3 Hybrid logic with operators ↓, @ and A

The key intuition behind our use of hybrid logic for querying depen-
dency treebanks is that dependency trees can be thought of as Kripke
models. In fact they are a subclass of the set of binary multimodal
Kripke models (Blackburn et al., 2001). Sentence positions are nominals
that denote the nodes in dependency structure. The words are propo-
sitional variables that may denote several nodes in a tree. Typically
nodes are also labeled by part-of-speech tags, i.e. syntactic categories
such as NNP (subclass of nouns) or VBN (subclass of verbs), which
also can be seen as propositional variables that denote a subset of the
nodes of a dependency structure. The dependency arcs are labeled by
modalities.

The syntax of HL-(↓,@, A) is as follows:

φ
.
= p|i|φ ∧ ψ|¬φ|〈a〉φ| ↓i φ|@iφ|Aφ

with p ∈ PROP a propositional variable, i ∈ NOM a nominal and
a ∈ LBL a dependency label. The letters i, j, k, . . . will be used to
denote nominals, i.e. propositional variables that can only be true in a
single node in a dependency tree, or equivalently in a single world in
the Kripke model.

We augment this language in two ways: Since many of our propo-
sitional variables are part-of-speech-tags with some internal structure,
e.g. NNP and NN both denote nominal elements, it is useful to be able
to query with regular expressions such as ’〈a〉(NN∗)’. Similarly we add
a PDL-style Kleene star over modalities (programs) to be able to ask
for dominance along dependency arcs with a certain label or precedence
in a syntactically simple fashion. None of these augmentations have any
impact on the complexity of model checking.

The semantics of HL-(↓,@, A) is, except for the ↓ operator, a
straight-forward extension of modal logic semantics with valuation
function V : PROP ∪NOM → W2.

M,w |= p iff w ∈ V(p)
M,w |= i iff V(i) = {w}

M,w |= φ ∧ ψ iff M,w |= φ&M,w |= ψ

M,w |= ¬φ iff M,w 6|= φ

M,w |= 〈a〉φ iff ∃w′.Ra(w,w
′)&M,w′ |= φ

M,w |= @iφ iff M,w′ |= φ ∧ V(i) = {w′}
M,w |= Aφ iff ∀w′ ∈ W.M,w′ |= φ

For the ↓ operator, we introduce a valuation function g : NOM → W

and write:

6 / LiLT volume 7, issue 5 January 2012

M, g,w |=↓i φ iff M, g′, w |= φ ∧ g′ =i g

∧g′(x) = w

In other words, g′ assigns i to w, but otherwise agree with g in
all respects. Intuitively, the ↓ operator thus names a world. The @
operator takes you to named worlds, whereas A takes you everywhere
in a connected graphs. In dependency treebanks, the nodes are words
labeled with word forms and POS tags, and the operators are thus
used to move around between the words in the dependency structures.

Example. Consider the following hybrid logic formulas, all true of the
second node in our running example, i.e. the word decorated with the
verb likes:

1. 〈obj〉⊤

2. 〈obj〉 ↓i ⊤ ∧ 〈right〉i

3. ↓j 〈obj〉 ↓i @i〈left〉j

The first formula is true in the second node, because the verb likes

has an object, namely the third word in the sentence. In other words
(w2, w3) ∈ Robj. The second formula says that likes has an object that
is immediately right of it. The nominal enforces the identity. Finally,
the third formula says that if you go the object of likes, there is a left
arc back to likes. Or, equivalently, likes is immediately left of its object.

Let us introduce a Rhead such that (i∧ 〈obj〉j) → (j ∧ 〈head〉i); and
similarly, for all other dependency relations. Rhead is now the mirror
image or converse of the union of all the dependency relations. It now
holds that A〈head∗〉root , where root is the name of the root node. This
imposes connectivity on dependency structures.

In our experiments, we will query for cyclic structures, but we may
now reconsider the question in (2) above, i.e. whether there are any sen-
tences without subjects? The shortest formula encoding that is proba-
bly A[subj]⊥. If this formula comes out true in a dependency structure,
there are no subjects in that dependency structure.

4 Querying dependency treebanks in hybrid logic

Dependency treebanks typically come in what is known as CoNLL for-
mat. The format uses eight columns to encode dependency structures
with one row per word. The English and Swedish treebanks used in our
experiments only make use of five of these columns. Our running ex-
ample is presented in CoNLL format in Figure 1. The CONLL format
is described in more detail in Buchholz and Marsi (2006).

When querying dependency structures in CONLL format we think

Using hybrid logic for querying dependency treebanks / 7

WORD LEMMA CPOS POS FEATS HEAD DEPREL
1 John - NP - - 2 SUBJ
2 likes - V - - 0 ROOT
3 strawberries - NP - - 2 OBJ

FIGURE 1 Running example in CoNLL format.

of each structure as a Kripke structure. A Kripke structure is thus
represented as n rows of eight columns. As already mentioned, the
dependency relations form a tree, but incl. precedence relations the
dependency graphs may contain cycles.

Contrary to HLMC our system uses a top-down approach, checking
each world one by one. This means we can do lazy evaluation. For
example, for a disjunction like φ ∨ ψ we need not test ψ if φ turns out
to be true. Similar lazy evaluation can be done for conjunction and the
conditional. This approach is also suggested in Lange (2009).

This does not work well with the A operator, since we would easily
end up checking the same world over and over again. We have therefore
implemented a mechanism that keeps track of what subformulas have
been checked, including the world they were checked in and the vari-
ables bound at the time. This allows us to skip some rechecking when
we have nested As. Furthermore we have implemented a preprocessing
step that can collapse A operators if subexpressions turn out to have
constant value. This preprocessing step reduces all the A-formulas in
the test to the same size. Of course, in more realistic settings, the gain
from the preprocessing step will be much smaller.

We have added a few operators to the grammar designed specifi-
cally for querying dependency treebanks in CONLL format. These in-
clude unary operators WORD φ and POS φ for checking for specific
word forms and POS tags, resp. We have also added WORDRE φ and
POSRE φ that work the same way except that the check is carried out
using regular expressions. Our system is written in C#.

5 Experiments

5.1 Data

We use two dependency treebanks in our experiments: Penn-III (Mar-
cus et al., 1993) for English and Talbanken05 (Nilsson et al., 2005) for
Swedish. Penn-III is one of the largest available treebanks with 50,000
sentences (∼ 1M words), whereas Talbanken04 is rather small (∼ 200K
words). Penn-III does not have any non-projective dependency arcs,
but 9.8% of the dependency arcs in the Swedish treebank are non-
projective.

8 / LiLT volume 7, issue 5 January 2012

5.2 Baseline system

Our two baseline systems are publicly available, namely DTAG1 and
HLMC2.

HLMC is to the best of our knowledge the only publicly available
hybrid logic model checker. It uses XML-formatted Kripke models as
input format, and we implemented an efficient wrapper to feed it with
queries and XML-formatted dependency trees. HLMC implements the
algorithms in Franceschet and de Rijke (2005). Contrary to HLMC our
system uses a top-down approach very similar to the approach taken in
Lange (2009), checking each world one by one. HLMC also implements
more hybrid logic operators.

DTAG (Buch-Kromann, 2003) is a widely used tool for constructing
and querying dependency treebanks. DTAG reads formulas from stdin.
Consequently, we only test formulas of limited depth (k ≤ 5). This,
however, is enough to illustrate that our model checker is considerably
faster than DTAG.

5.3 Experiments

Test formulas

The test formulas used in HLMC and our system are identical, since
our model checker supports the syntax used in HLMC. The formulas
were generated automatically using the algorithms presented in Figure
2–4:

. The algorithm in Figure 2 generates formulas that checks for cycles
of depth k. This kind of formulas is motivated by our application.
Checking for cycles is important when validating a treebank. Our
model checker implements transitive closure over relations (PDL-
style Kripke star over modalities), but since HLMC does not, we
do not use transitive closure in our formulas. The algorithm, for
example, generates the following formula for k = 2:

↓ i0(⊤ → (¬〈a0〉(i0) ∧ ¬〈a0〉(〈a0〉(i0))))

where Ra0
is the union of all dependency relations; or, more intu-

itively, an unlabeled dependency relation. The formula checks that
we cannot get back to the current state in less than three (k + 1)
steps.

. The algorithm in Figure 3 generates tautologies with k embeddings
of ↓ operators. These formulas are not motivated by our application,
but ↓ operators are frequently embedded in linguistic queries.

1http://www.buch-kromann.dk/matthias/dtag/
2http://www.luigidragone.com/hlmc/

Using hybrid logic for querying dependency treebanks / 9

1: print ”↓ i0(⊤ → (”
2: for i ∈ {1...k} do

3: if i 6= 1 then

4: print ”∧”
5: end if

6: print ”¬”
7: for j ∈ {1...i} do

8: print 〈a0〉(”
9: end for

10: print ”i0”
11: for j ∈ {1...i} do

12: print ”)”
13: end for

14: end for

15: print ”))”

FIGURE 2 Algorithm for generating cycle check formulas.

1: print ”↓ i0(”
2: for i ∈ {1...k − 1} do

3: print ”↓ ii(ii−1∧”
4: end for

5: print ”ik−1”
6: for j ∈ {1...k − 1} do

7: print)”
8: end for

9: print ”)”

FIGURE 3 Algorithm for generating ↓-formulas.

. The algorithm in Figure 4 generates tautologies with k embeddings
of A operators. These formulas are not motivated by our application,
but A operators are frequently embedded in linguistic queries.

As already mentioned, we only test formulas with k = 3 and k =
5 in DTAG. Furthermore, DTAG is a querying tool for dependency
treebanks, not a hybrid logic model checker, so we only test DTAG
performance on cycle check formulas.

Hardware

Since HLMC currently does not support Mac OS X or Windows, we
had to use different operating systems and different hardware in our
comparison. HLMC was run under Linux on a small 2.66GHz, 16GB

10 / LiLT volume 7, issue 5 January 2012

1: print ”A(”
2: for i ∈ {1...k − 1} do

3: print ”A(⊤∧”
4: end for

5: print ”⊤”
6: for j ∈ {1...k − 1} do

7: print)”
8: end for

9: print ”)”

FIGURE 4 Algorithm for generating A-formulas.

PTB-III

3 5 10 25 50
DTAG 17:28 63:20 - - -
HLMC 01:18 02.03 05:56 10K: ∞
Ours 00:02 00:04 00:08 00:25 00:41
T05

3 5 10 25 50
DTAG 2:50 11:03 - - -
HLMC 00:14 00:21 00:51 2.3K: ∞
Ours 00:00 00:01 00:01 00:03 00:06

FIGURE 5 Performance on cycle check formulas, excl. I/O and parsing the
input. Very high numbers estimated after partial runs.

RAM server with eight cores. We deliberately used weaker hardware for
our own system, namely a 2.66GHz Intel Core i7 with Mac OS X (4GB
RAM). Furthermore, the model checker was run virtually in Windows
7 (32 bit) using only 1 CPU and 2GB RAM. DTAG was also run on
considerably stronger hardware, namely a 3.06 GHz Intel Core 2 Duo
with Mac OS X (8 GB RAM). Consequently, if our system is faster than
HLMC and DTAG in this set-up, it will be even faster on a comparable
set-up.

5.4 Results

Our results show that our model checker is much faster than HLMC,
especially for formulas of considerable depth. Even for formulas of lim-
ited depth, our system seems quite consistently to be more than 50
times faster than HLMC on cycle check formulas.

HLMC seems to have serious problems with formulas with nested
↓ operators. The runtimes for A formulas are somewhat incomparable

Using hybrid logic for querying dependency treebanks / 11

PTB-III

3 5 10 25 50
HLMC 50:37 22K: ∞ ∞ ∞
Ours 00:01 00:01 00:02 00:03 00:07
T05

3 5 10 25 50
HLMC 05:17 2.6K: ∞ ∞ ∞
Ours 00:00 00:00 00:00 00:00 00:01

FIGURE 6 Runtimes on ↓-formulas (mm:ss), excl. I/O and parsing the
input. Very high numbers estimated after partial runs.

PTB-III

3 5 10 25 50

HLMC 00:43 00:44 00:54 01:44 04:37
Ours 00:01 00:01 00:01 00:01 00:01

T05

3 5 10 25 50

HLMC 00:08 00:08 00:09 00:18 00:47
Ours 00:00 00:00 00:00 00:00 00:00

FIGURE 7 Runtimes on A-formulas (mm:ss), excl. I/O and parsing the
input. Very high numbers estimated after partial runs.

12 / LiLT volume 7, issue 5 January 2012

because of the strategy mentioned above that reduces A formulas to a
shorter equivalent form.

The most worrying result from a practical point of view is that
HLMC is very slow when it searches for long cycles. Searching for cy-
cles with maximum length 25, the HLMC takes about 10,000 minutes,
i.e. about a week, to search the entire PTB-III. Our model checker does
that in 25 seconds.

6 Conclusion

We have implemented a very fast top-down hybrid logic model checker
for querying dependency treebanks. It has a number of features that
makes it easy to write linguistic queries and validate dependency tree-
banks. In a series of experiments, we show that our model checker is
considerably faster than a commonly used querying tool for depen-
dency treebanks (DTAG) and a general purpose hybrid logic model
checker (HLMC). The system is publicly available for on-line use at
http://www.modelchecker.dk.

Acknowledgments

This paper was presented at a meeting in Hybrid Logic and Applica-
tions, The 25th Annual IEEE Symposium on Logic in Computer Science
(LICS), but never published. We thank the audience for their helpful
comments. Thanks also to the three anonymous reviewers.

References

Blackburn, Patrick. 1994. Structures, languages and translations: the struc-
tural approach to feature logic. In C. J. Rupp, R. Johnson, and M. Ros-
ner, eds., Constraints, language and computation, pages 1–29. London:
Academic Press.

Blackburn, Patrick, Maarten de Rijke, and Yde Venema. 2001. Modal logic.
Cambridge, England: Cambridge University Press.

Blackburn, Patrick and Wilfried Meyer-Viol. 1994. Linguistics, logic and
finite trees. Logic Journal of IGPL 2(1):3–29.

Blackburn, Patrick and Jerry Seligman. 1995. Hybrid languages. Journal of
Logic, Language and Information 4:251–272.

Buch-Kromann, Matthias. 2003. The Danish Dependency Treebank and the
DTAG Treebank Tool. In TLT .

Buchholz, Sabine and Erwin Marsi. 2006. CoNLL-X Shared Task on mul-
tilingual dependency parsing. In Proceedings of the Tenth Conference on
Computational Natural Language Learning , pages 149–164. New York City,
NY.

Franceschet, Massimo and Maarten de Rijke. 2005. Model checking for hybrid
logics. Journal of Applied Logic 4(3):279–304.

References / 13

Hoareau, Christian and Ichiro Satoh. 2007. A model checking-based approach
for location query processing in pervasive computing environments. In On
the Move to Meaningful Internet Systems 2007 , vol. 4806 of LNCS , pages
866–875. Berlin, Germany: Springer.

Hoareau, Christian and Ichiro Satoh. 2008. Hybrid logics and model check-
ing: A recipe for query processing in location-aware environments. In Pro-
ceedings of the 22nd International Conference on Advanced Information
Networking and Applications (AINA), pages 130–137. Washington, DC,
USA.

Keller, Bill. 1993. Feature logics, infinitary descriptions and grammar . Stan-
ford, California: CSLI Publications.

Kepser, Stephan. 2004. Querying linguistic treebanks with monadic second-
order logic in linear time. Journal of Logic, Language and Information
13:457–470.

Kracht, Marcus. 1995. Is there a genuine modal perspective on feature struc-
tures? Linguistics & Philosophy 18:401–458.

Lange, Martin. 2006. Model checking propositional dynamic logic with all
extras. Journal of Applied Logic 4:39–49.

Lange, Martin. 2009. Model checking for hybrid logic. Journal of Logic,
Language and Information 18(4):465–491.

Marcus, Mitchell, Mary Marcinkiewicz, and Beatrice Santorini. 1993. Build-
ing a large annotated corpus of English: the Penn Treebank. Computa-
tional Linguistics 19(2):313–330.

Nilsson, Jens, Jens Hall, and Joakim Nivre. 2005. MAMBA meets TIGER:
Reconstructing a Swedish treebank from antiquity. In NODALIDA. Joen-
suu, Finland.

Passy, Solomon and Tinko Tinchev. 1991. An essay in combinatory dynamic
logic. Information and Computation 93:262–332.

Reape, Mike. 1994. A feature value logic with intensionality, nonwellfounded-
ness and functional and relational dependencies. In Constraints, language
and computation, pages 77–110. San Fransisco, CA: Academic Press.

Richter, Frank. 2004. A mathematical formalism for linguistic theories
with an application in head-driven phrase structure grammar . Phd the-
sis (2000), Universität Tübingen, Tübingen, Germany.

Søgaard, Anders and Martin Lange. 2009. Polyadic dynamic logics for HPSG
parsing. Journal of Logic, Language and Information 18(2):159–198.

Wallis, Sean and Gerald Nelson. 2000. Exploiting fuzzy tree fragment queries
in the investigation of parsed corpora. Literary and Linguistic Computing
15(3):339–361.

