
Linguistic Issues in Language Technology – LiLT

Submitted, January 2012

Banking Meaning Representations

from Treebanks

Alastair Butler

Kei Yoshimoto

Published by CSLI Publications

LiLT volume 7, issue 6 January 2012

Banking Meaning Representations from

Treebanks

Alastair Butler, Japan Science and Technology Agency,

PRESTO, Kei Yoshimoto, Tohoku University

Abstract

This paper describes a method to convert existing treebanks with syn-
tactic information into banks of meaning representations. The central
component is a system of evaluation for a small formal language with
respect to an information state. Inputs to the evaluation system are for-
mal language expressions obtained from the conversion of parsed repre-
sentations conforming to (Penn Treebank Project) guidelines. Outputs
from the evaluation system are Davidsonian (higher-order) predicate
logic meaning representations. Having a system of evaluation as the
basis for generating meaning representations makes possible accept-
ing input with minimal conversion from existing treebanks and from
the tools used to construct treebanks. Results of having built corre-
sponding banks of meaning representations from available treebanks
are discussed.

1

LiLT Volume 7, Issue 6, January 2012.
Banking Meaning Representations from Treebanks.
Copyright c© 2012, CSLI Publications.

2 / LiLT volume 7, issue 6 January 2012

1 Introduction

This paper introduces a method of formal evaluation as a way to auto-
matically obtain banks of meaning representations from data following
conventional treebank guidelines. Applicability is demonstrated with
data of The Penn Treebank Project (Marcus et al. 1993). The approach
requires no lexical information that is additional to what is retrievable
from the input treebank data, having the ability to build or adjust
the contribution of morphosyntax information depending on a chang-
ing information state in which sequence values are assigned to binding
names with grammatical roles. Binding name roles are prescribed on a
language and treebank guidelines basis, supplemented with roles gen-
erated from a scan of the input data. The mechanism of the formal
evaluation is of crucial importance because it acts to enforce guidance
on the creation of binding dependencies, guaranteeing grammatical de-
pendencies.

The paper is structured as follows. Section 2 outlines theoretical
background for the approach. Section 3 sketches a simple example.
Section 4 covers definitions on which the approach relies. Section 5
details the calculation of scope for quantifiers, indefinites and definites,
including interaction with negation. Section 6 presents results for the
conversion of existing treebanks into banks of meaning representations.
Section 7 discusses related work. Section 8 summarises.

2 Theoretical Background

In the formal study of language the essence of grammatical structure
is regarded as the range of valid dependencies. Linguistic theories typ-
ically work by placing limits on the manipulation of syntactic struc-
tures, e.g., constituent trees or feature structures, to attain a handle on
valid dependencies (see for example Government and Binding Theory,
Lexical Functional Grammar, Head-driven Phrase Structure Grammar,
Combinatory Categorial Grammar and Dynamic Syntax).

The theory adopted here, Scope Control Theory (SCT; Butler 2010),
takes a different route, aiming to characterise grammatical structure in
terms of dependencies established when there is the formal evaluation
of a given parsed expression against an information state as introduced
by Vermeulen (2000) that assigns to binding names sequences of values
storing discourse and intra sentential information. The ultimate pur-
pose for undertaking evaluations is to calculate denotations of natural
language utterances—here as meaning representation output.

For SCT well-formedness of a parsed expression is assured when it
is possible to maintain during evaluation equality between the length

Banking Meaning Representations from Treebanks / 3

of sequence values required to satisfy the bindings of the parsed ex-
pression under evaluation and the length of sequence values provided
by the current information state. By extending, manipulating, reducing
or temporarily making inactive parts of assigned sequence values un-
der this equality condition, the complex formation of natural language
utterances is simulated.

The current work builds on Butler (2010) where it was shown how
limits from evaluation can match a wide range of valid dependency
patterns, including locality effects, accessibility of anaphoric referents,
intervention effects and circumstances for long-distance dependencies.
With the application of this theory the constraints from evaluation are
themselves employed to assist evaluation when structural information is
missing from a parsed input. Consequences are twofold: when structural
information is present restrictions of grammaticality are enforced, when
structural information is absent decisions about valid dependencies may
guide evaluation.

3 An Example

To have evaluation generate meaning representations starts with data
in some treebank format. For example, sentence (1) is represented as the
parsed form (2) following the Penn Treebank II guidelines of Santorini
(1990) and Bies et al. (1995).

(1) Pierre joins the board.

(2) (S (NP-SBJ (NNP Pierre))

(VP (VBZ joins) (NP (DT the) (NN board))) (. .))

The next step is to convert (2) into an evaluable expression, (3). This
transforms into operators the part of speech tags inserted as nodes im-
mediately dominating the terminals of (2). While NP-SBJ converts to
the "arg0" binding name, and bare NP to "arg1", other non-terminal
nodes of (2) are eliminated to leave only the bracketed constituency of
(2). Representation (3) also adds information about the range of po-
tential binding names, with ["h", "arg0", "arg1"] as the value for the
lc parameter (the "h" name is always present and will bind nominals;
see "board" in (5)).

(3) (λlc.

(((nnp "Pierre") "arg0")

(((dt lc fh "the" "d" (nn lc "board")) "arg1")

(present (verb lc ["arg1"] "joins")))))

["h", "arg0", "arg1"]

What is interesting about (3) is that only limited information recov-
erable from (2) is given about the lexical content of the verb. The

4 / LiLT volume 7, issue 6 January 2012

conversion of VBZ leads to the verb being marked with present (tense),
and sister information from (2) gives ["arg1"] to state the verb has an
object, but there is no other argument structure information to distin-
guish whether the verb takes a subject binding, or additional modifying
arguments, etc.

Definitions (see section 4 for details) are given for nnp (proper name),
dt (determiner), nn (ordinary noun), present and verb, such that, with
the part of speech and functional tag information of the input tree,
there is no requirement for a lexicon to state the contribution of specific
words. (To manipulate the quality of meaning representations particu-
lar word information, especially for functional words, as well as details
of specific analyses of linguistic phenomena, are typically integrated
during conversion to an evaluable expression, e.g., the step from (2) to
(3). This is deliberately left as an open ended task to foster experimen-
tation.) Together with specification of the open parameter fh, e.g., fh
= ["e", "event", "d", "constant"], (3) reduces to the evaluable (4).

(4) CUse ("Pierre", "constant",

Lam ("constant", "arg0",

Use ("d",

Lam ("d", "arg1",

Rel (["e", "event", "d", "constant"],

["c", "c", "c", "c"], "and", [

Throw ("d",

Lam ("arg1", "h",

Garb (0, ["arg0", "arg1"], "c",

Garb (1, ["h"], "c",

Pred ("board" [T "h"])))))),

Rel (nil, nil, "and", [

Use ("event", [

If (gt1test "h",

If (gt1test "arg0",

Pred ("joins", [T "arg1", "arg0", "h", "event"]),

Pred ("joins", [T "arg1", "h", "event"])),

If (gt1test "arg0",

Pred ("joins", [T "arg1", "arg0", "event"]),

Pred ("joins", [T "arg1", "event"])))),

Throw ("event",

Pred ("≈", [T "event, T "cevent"])))))))

Expression (4) is built from primitive operations of the SCT lan-
guage (see Butler 2010 for details): CUse (states injection of a constant
into the assignment), Use (states a binding must be available for a bind-
ing name), Lam (shifts bindings between binding names), Rel (creates
a relation while manipulating the information state), Pred (creates a
predicate), T (creates a bound term), Throw (instructs to reposition ma-
terial with respect to a closure post-evaluation), Garb (removes active

Banking Meaning Representations from Treebanks / 5

bindings) and If (evaluates only one of two subexpressions depending
on a test of the information state, e.g., gt1test "h" tests whether the
sequence assigned to "h" contains one or more values).

A (simplified) illustration of what occurs with an evaluation of (4) is
given by (5). Assume names missing from illustrations of assignments
are assigned the empty sequence.

(5) "cevent" → [e0] Close "constant"

"cevent" → [e0]
"constant" → [Pierre] Close exist "d"

"cevent" → [e0]
"constant" → [Pierre]
"d" → [x]

Close exist "event"

"cevent" → [e0]
"constant" → [Pierre]
"d" → [x]
"event" → [e1]

Lam "constant", "arg0"

"cevent" → [e0]
"arg0" → [Pierre]
"d" → [x]
"event" → [e1]

Lam "d", "arg1"

"cevent" → [e0]
"arg0" → [Pierre]
"arg1" → [x]
"event" → [e1]

"and"

"cevent" → [e0]
"arg0" → [Pierre]
"arg1" → [x]

Lam "arg1", "h"

"h" → [x]
"cevent" → [e0]
"arg0" → [Pierre]

Garb 0 ["arg0", "arg1"] "c"

"h" → [x]
"cevent" → [e0]
"c" → [Pierre]

"board"

T "h"

"and"

"cevent" → [e0]
"arg0" → [Pierre]
"arg1" → [x]
"event" → [e1]

"joins"

T "arg1" T "arg0" T "event"

"cevent" → [e0]
"arg0" → [Pierre]
"arg1" → [x]
"event" → [e1]

"≈"

T "event" T "cevent"

This starts from an initial information state where only "cevent" (con-
text event, beginning as utterance time) is assigned a non-empty se-
quence, which contains a single value. Values are subsequently added to
the sequences assigned to "constant", "d" and "event". The distribution
of these values is further manipulated throughout (5), with sequence
values able to shift between the sequences assigned to different binding
names, so whenever evaluation terminates only correct bindings for the
relevant predicates obtain. When a predicate leaves open a range of
argument options (as with "joins" in (4), depending on an If condi-
tion testing for "arg0" bindings embedded in an If condition testing

6 / LiLT volume 7, issue 6 January 2012

for "h" bindings), the appropriate option is selected by the evaluation
((5) shows "joins" with "arg0" and "arg1" arguments and no "h" ar-
gument, and so as a transitive verb). If a predicate is fully specificed
(as "board" is in (4) with no If conditions), error feedback about the
information state is returned should the information state fail to satisfy
what is required by the predicate.

Following (5) the meaning representation (6) is returned. This as-
sumes a Davidsonian theory (Davidson 1967) in which the verb ex-
presses a three-place relation between the nominal arguments and an
implicit event argument which is existentially quantified over. Such a
representation allows for any modifiers of the verb to be added con-
junctively as predicates of the event argument. We should expect the
free variable e0 to denote the time of utterance as part of the encoding
of present tense.

(6) ∃x(board(x)∧ ∃e1(e1 ≈ e0 ∧ joins(e1,Pierre,x)))

4 Definitions

In this section we fill in details for nnp (proper name), present (tense),
nn (ordinary noun), verb and dt (determiner), sufficient to reduce (3)
to (4).

Proper names are formed with nnp, (7), invoking SCT primitives CUse
to inject a constant (the value r) into the assignment with (i) a com-
manding "constant" closure that searches for correspondingly named
instances of CUse, and (ii) Lam to make r a sequence value assigned to
x. The point of utilising a commanding closure rather than more di-
rectly integrating the constant with an x binding is that availability of
the constant is made as wide as the level of closure (e.g., to happen at
the level of discourse). The contribution of the proper name is thereby
made accessible for pronouns (but essentially only pronouns that follow
the proper name within the text, because of Rel discussed at the end
of section 4).

(7) nnp = λr.λx.λemb.

CUse (r, "constant", Lam ("constant", x, emb))

present, (8), creates a restrictive condition to state that the event
time of the local verb (stored as the "event" binding) ‘is contempo-
raneous with’ (≈) the frontmost "cevent" binding (the utterance time
with a matrix clause). Internally to present, Throw "event" provides an
instruction to reposition after evaluation completes the restrictive con-
dition immediately below the point where the event binding is created.

(8) present = λemb.

Rel (nil, nil, "and", [

Banking Meaning Representations from Treebanks / 7

emb,

Throw ("event",

Pred ("≈" [T "event", T "cevent"])))

For nn and verb, we start by introducing recursive add_args, (9).
This takes three parameters: l1 and l2 as sequences of binding names
and predicate that itself has an open parameter to take a sequence of
binding names. If l1 is nil (the empty sequence) then the content of l2
is applied to predicate, else an expression is created with If that has (i)
a test for a single binding with (hd l1) (the frontmost value of l1), (ii)
an expression to evaluate if the test succeeds involving l2 extended by
concatenation (@) with [hd l1] and a recursive call to add_args on the
tail of l1, and (iii) an expression to evaluate if the test fails involving
a recursive call to add_args on the tail of l1 but no extension to l2.

(9) rec add_args = λl1.λl2.λpredicate.

if l1 = nil then predicate l2 else

If (gt1test (hd l1),

add_args (tl l1) ([hd l1] @ l2) predicate,

add_args (tl l1) l2 predicate)

To create encodings for nouns nn, (10), calls add_args as a wrapper
around Pred that creates a predicate with at the very least a T "h" argu-
ment, and possibly others built from names supplied to an l parameter.
The call of add_args adds arguments to Pred with names taken from
the open lc parameter, but with diff acting to remove the "h", "arg0"
and "arg1" names, such that added arguments only have consequences
for an evaluation when sufficient binding support is present from the
assignment.

(10) nn = λlc.λs.

add_args (diff (lc, ["h", "arg0", "arg1"])) nil (

λl.Pred (s, map (λx.T x) (l @ ["h"])))

Encodings for verbs are created with verb, (11). This is similar to
nn, except the ever present argument is "event" rather than "h", and
a Use instruction is given for an "event" binding to be created by a
commanding level of closure. Also there is an extra parameter args for
taking a sequence of binding names that must be arguments of the
verb.

(11) verb = λlc.λargs.λs.

Use ("event",

add_args (diff (l, args @ ["event"])) nil (

λl.Pred (s, map (λx.T x) (l @ args @ ["event"])))))

Next we consider the definition of dt (determiner):

8 / LiLT volume 7, issue 6 January 2012

(12) dt = λlc.λfh.λdet.λv.λl.λx.λemb.

(case det

of "a" => some lc fh v l x emb

| "the" => some lc fh v l x emb

| "every" => every lc fh v l x emb

| _ => general_quant lc fh v l x emb)

Depending on the det parameter, dt calls either some, (13), every, (14),
or general_quant, (15).

(13) some = λlc.λfh.λv.λe.λx.λemb.

Use (v,

Lam (v, x,

Rel (fh, map (λx."c") fh, "and", [

Throw (v, rest lc x e), emb]))

(14) every = λlc.λfh.λv.λe.λx.λemb.

Hide(v,

Close (∀, v,

Use (v,

Lam (v, x,

Rel (fh, map (λx."c") fh, "→", [

rest lc x e, Hide (v, Close (∃, v, emb)])))

(15) general_quant = λoper.λlc.λfh.λv.λe.λx.λemb.

Quant (oper, x,

Rel (fh, map (λx."c") fh, "", [rest lc x e, emb]))

some contains Use v requesting the commanding v closure to create a
value which Lam integrates as a sequence value assigned to x. As with
nnp, the rational for the Use-Lam combination is to produce discourse
consequences: the introduced value is made accessible to subsequent
pronouns. Presence of Throw v ensures material of the restriction has
placement immediately below the point where the introduced value is
created after evaluation completes.

every introduces operations of closure with the SCT primitive Close,
to create overall instances of universal quantification based on a count
for occurrences of Use v, as well as existential quantification internal to
the nuclear scope. Hide v is a primitive SCT operation that terminates
counting instances of Use v and CUse v. In contrast, the quantifica-
tion of general_quant is created with the SCT primitive Quant which
forms a single quantificational instance without closure/discourse con-
sequences.

Correct environments for the restrictions of noun phrases are assured
with the calls to rest included with (13)–(15). The idea implemented
by rest, (16), is that noun phrases should insulate the restriction from
the containing clause by shifting all open local bindings to a given

Banking Meaning Representations from Treebanks / 9

binding name (here, "c") with the exception of the binding that it is
the purpose of the noun phrase to introduce which must shift to an "h"

binding to make available the required binding for nouns. Insulation is
accomplished with SCT primitive operations Lam and Garb. Lam relocates
the x binding (the binding the noun phrase opens in the containing
clause) to an "h" binding. Garb (n, x̂, y, e) modifies the assignment
by relocating potentially multiple values from the sequences assigned
to the names of x̂ into the sequence that is assigned to y, so exactly
the frontmost n bindings remain assigned to each name of x̂.

(16) rest = λlc.λx.λe.

Lam (x, "h",

Garb (0, diff (lc, ["h"]), "c",

Garb (1, ["h"], "c", e)))

An application of rest can be seen within (5) that (i) turns the "arg1"

binding into an "h" binding, (ii) shifts all other open bindings of the
names in ["h", "arg0", "arg1"] minus "h" to "c" bindings, and (iii)
would shift all values of the sequence assigned to "h" to "c" with the
exception of the frontmost value were there any, which is not the case
in (5).

The remaining SCT primitive operation present in (13)–(15) to detail
is Rel. The role of Rel is to establish a relation over a sequence of
arguments, but in doing so Rel can also manipulate the content of the
assignment function passed on for the evaluation of each argument to
achieve discourse consequences based on the content of two sequences
of binding names and the number of instances of Use present in the
arguments with names corresponding to names in the first sequence.
This is demonstrated with (17): Rel creates an "and" relation with four
arguments, each of which are to be evaluated against a different state
of the assignment function determined by instances of Use "new" which
are present with the occurrences of Someone (e.g., following (13)). The
idea reflected in (17) is that pronouns are able to link to "old" bindings.

(17)

"new" → [y,x]

"old" → []
Rel (["new"], ["old"], "and" [_, _, _, _])

"new" → [x]

"old" → []

"new" → []

"old" → [x]

"new" → [y]

"old" → [x]

"new" → []

"old" → [y,x]

Someonex smiles. Hex/∗y laughs. Someoney sees himx/∗y. The end.

10 / LiLT volume 7, issue 6 January 2012

5 Quantifiers, Indefinites and Definites

Crucial information required for meaning representations and yet miss-
ing from syntactic representations concerns the placement of scope tak-
ing elements together with their restriction materials. In this section
we detail how this missing information is calculated during evaluations
of quantifiers, indefinites and definites.

As a default quantifiers will take scope in the meaning representa-
tion in correspondence with their syntactic location within the input
parse tree. For example, in (18) “every day” falls under the syntactic
scope of “someone” and so gives rise to (19) in which the contribution
of “every day” scopes under the contribution of “someone”. Note “every
day” existentially closes its nuclear scope to scope over the binding of
the temporal argument of the verb. The temporal modifier representa-
tion in (18) is based on a suggestion in Landman (2000), using ⊑ for
temporal inclusion.

(18) (S (NP-SBJ (NN Someone))
(VP (VBD visited)

(NP (NNP Bill))
(NP-TMP (DT every) (NN day)) (. .))

(19) ∃x(person(x) ∧ ∀y(day(y) →

∃e1(e1 < e0 ∧ visited(e1,x,Bill) ∧ time(e1) ⊑ y)))

The scope of an indefinite like “someone” is not determined by its
syntactic location, but rather by the placement of the closure from
where its binding comes. In converting (20) to SCT expression (21)
the contribution of “someone” is marked to take its binding from an
"e" closure. With its nuclear scope “every day” brings about an "e"

(existential) closure (as seen with the event binding in (19)), and so
the returned meaning representation, (22), has “someone” scoping below
“every day”.

(20) (S (NP-TMP (DT Every) (NN day))
(NP-SBJ (NN someone))
(VP (VBD visited)

(NP (NNP Bill))) (. .))

(21) (λlc.
(((dt lc fh "every" "e" (nn lc "day"))

"tmp_")
(((some lc fh "e" (nn lc "person"))

"arg0")
(((nnp "Bill")

"arg1")
(past (verb lc ["arg1"] "visited"))))))

["h", "arg0", "arg1", "tmp_"]

(22) ∀x(day(x)→ ∃e1(e1 < e0 ∧

∃y(person(y) ∧ visited(e1,y,Bill) ∧ time(e1) ⊑ x)))

Banking Meaning Representations from Treebanks / 11

In contrast, the contribution of “someone” in (23) is marked to take its
binding from a "d" closure, which is the only deviation from (21). A "d"

closure occurs only at the discourse level to give the indefinite widest
scope, and so brings about the same output form the evaluation of (23)
as seen already with (18), namely (19).

(23) (λlc.
(((dt lc fh "every" "e" (nn lc "day")) "tmp_")
(((some lc fh "d" (nn lc "person")) "arg0")

(((nnp "Bill") "arg1")
(past (verb lc ["arg1"] "visited")))))))

["h", "arg0", "arg1", "tmp_"]

Negation is defined to bring about an "e" closure and so ordinarily
an indefinite will scope under negation.

(24) (S (NP-SBJ (PRP I))
(VP (VBP do) (RB n’t)

(VP (VB like) (NP (NNS enchiladas)))) (. .))

(25) (λlc.
(((pro lc fh "i") "arg0")
(neg

(((some lc fh "e" (nn lc "enchiladas")) "arg1")
(verb lc ["arg1"] "like"))))) ["h", "arg0", "arg1"]

(26) ¬∃e1x(enchiladas(x)∧ like(e1,Speaker,x))

Definites are distinguishable from indefinites on the grounds that
their binding value always comes from a "d" closure and so a definite
will always scope with the discourse level (and so have a treatment
essentially like the indefinite of (23)). Moreover any indefinite within
the restriction of a definite is implemented to scope with the definite
at the discourse level, as (27)–(29) illustrate.

(27) (S (NP-SBJ (PRP I))
(VP (VBP do) (RB n’t)

(VP (VB like)
(NP (NP (DT the) (NN taste))

(PP (IN of) (NP (NNS enchiladas)))))) (. .))

(28) (λlc.
(((pro lc fh "i") "arg0")
(neg

(((dt lc fh "the" "d"
(((prep "of_")

(some lc fh "d" (nn lc "enchiladas")))
(nn lc "taste"))) "arg1")

(verb lc ["arg1"] "like")))))
["h", "arg0", "arg1", "of_"]

(29) ∃xy(enchiladas(x) ∧

is_taste_of(y,x) ∧ ¬∃e1like(e1,Speaker,y))

Discourse level scoping of an indefinite as a consequence of falling
within the restriction of a definite is however prevented if some other
scope taking element intervenes within the restriction of the definite,

12 / LiLT volume 7, issue 6 January 2012

as seen with (30) where negation falls between “the young” and the
instances of “cows” and “hand”, so that “cows” and “hand” scope with
negation in (32).

(30) (S (NP-SBJ (NP (DT The) (JJ young))
(SBAR (WHNP-2 (WP who))

(S (NP-SBJ (-NONE- *T*-2))
(VP (MD wo) (RB n’t)

(VP (VB milk)
(NP (NNS cows))
(PP-MNR (IN by) (NP (NN hand))))))))

(VP (VBP leave)))

(31) (λlc. (((dt lc fh "the" "d"
((coord fh " ∧ "

(relc
(((wpro) "h")

(clause
(((trace) "arg0")
(neg

(((some lc fh "e" (nn lc "cows"))
"arg1")

(((prep "mnr_by_")
(some lc fh "e" (nn lc "hand")))

(verb lc ["arg1", "mnr_by_"]
"milk")))))))))

(nn lc "young"))) "arg0")
(present (verb lc nil "leave")))) ["h", "arg0", "arg1", "mnr_by_"]

(32) ∃x(young(x) ∧

¬∃e2yz(cows(z) ∧ hand(y) ∧ milk(e2,x,z) ∧

mnr_by(e2) = y) ∧ ∃e1(e1 ≈ e0 ∧ leave(e1,x)))

6 Results

Having a system of evaluation as the basis for generating meaning rep-
resentations makes possible accepting input with minimal alteration to
syntactic information that is known to be correct and on a scale equal
to the availability of treebanks. To explore the coverage this allows
the system has been used to automatically convert into corresponding
banks of meaning representations content from The Penn Treebank-3
(LDC99T42; Mitchell P. Marcus and Taylor 1999), The Brown-GENIA
Treebank (Lease and Charniak 2005), and The PennBioIE 0.9 Treebank
(Kulick et al. 2004), with the coverage results of table 1.

Treebank Corpus no. of fully partially failed
trees completed completed

Penn ATIS-3 580 580 (100%) 0 0
Treebank-3 SWBD 110505 108216 (97.93%) 1072 (0.97%) 1217 (1.1%)

WSJ 49208 48764 (99.1%) 412 (0.84%) 32 (0.06%)
Brown-GENIA - 210 205 (97.6%) 5 (2.4%) 0
PennBioIE 0.9 cyp 3392 3347 (98.67%) 19 (0.56%) 26 (0.77%)

onco 3030 3002 (99.08%) 17 (0.56%) 11 (0.36%)

Table 1: Coverage results

Banking Meaning Representations from Treebanks / 13

To give a sense of how the meaning representations have scaled to
the data we illustrate three examples.

Example (33) from the WSJ corpus of the Penn Treebank demon-
strates coverage of an embedded clause. Interesting aspects of the rep-
resentation to note include the definite description “the end of the year”
that has widest scope despite occurring with an indefinite (“exports”)
that scopes inside the embedded clause. Also, the tense of the embedded
clause is made relative to the tense of the embedding clause.

(33) Government officials said exports at the end of the year would
remain under a government target of $68 billion.

(34) ∃xy(year(x) ∧ is_end_of(y,x) ∧

∃e1(e1 < e0 ∧

∃z(government_officials(z) ∧

said(e1,z,
∃e2uv(exports(v) ∧ time(v) ⊑ at(y) ∧

$68_BILLIONx1(unit(x1),

is_government_target_of(u,x1)) ∧

∃e3(e2 ≈ e1 ∧ e2 < e3 ∧

remain(e3,v) ∧ location(e3) ⊑ under(u)))))))

From the Brown-GENIA corpus (35) includes the representation of
an embedded clause and the modal “may” as an operator that scopes
over a proposition.

(35) Increased expression of wild-type NFAT1 substantially increases
IL-4 promoter activity in unprimed CD4 T cells, suggesting
NFAT1 may be limiting for IL-4 gene expression in this cell
type.

(36) ∃x(cell_type(x) ∧

∃e1e2(e2 ≈ e0 ∧

∃yzuv(wild-type(y) ∧ NFAT1(y) ∧

increased(v) ∧ is_expression_of(v,y) ∧

IL-4_promoter_activity(u) ∧

unprimed(z) ∧ CD4-T_cells(z) ∧

suggesting(e1,v,
∃x1(NFAT1(x1) ∧

may(∃e3x2(is_IL-4_gene_expression_in(x2,x) ∧

limiting(e3,x1) ∧ for(e3) = x2)))) ∧

increases(e2,v,u) ∧ location(e2) ⊑ in(z) ∧

∃e3(e3 = e2 ∧ substantially(e3)))))

Example (38) from the WSJ corpus of the Penn Treebank demon-
strates coverage of discourse. In the coding of the passives (“fired” and
“prosecuted”) in (39) “_” fills the agent argument slot of the predicate
to mark that there is no agent binding.

14 / LiLT volume 7, issue 6 January 2012

(38) Mrs. Yeargin was fired and prosecuted under an unusual South
Carolina law that makes it a crime to breach test security. In
September, she pleaded guilty and paid a $500 fine. Her alter-
native was 90 days in jail. Her story is partly one of personal
downfall. She was an unstinting teacher who won laurels and
inspired students, but she will probably never teach again.

(39) ∃p1e1e2e3e4e5e6e7(e2 < e0 ∧ e3 < e0 ∧ e4 < e0 ∧

e5 < e0 ∧ e6 ≈ e0 ∧ e7 < e0 ∧

∃xyzuvx1x2x3x4x5x6(∃e8(e8 ≈ e0 ∧

unusual(x) ∧ South_Carolina_law(x) ∧

makes(e8,x,
∃e9e10x7x8x9x10(crime(x10) ∧

∃x11(choose3(x11,x,Mrs. Yeargin,e1) ∧

crime(x8) ∧

∃x12(choose5(x12,x8,x11,x,Mrs. Yeargin,e1) ∧

test_security(x7) ∧ breach(e9,x12,x7))) ∧

∃x11(∃x12(choose8(x12,x10,x11,e9,x8,x7,x,Mrs. Yeargin,
e1) ∧ test_security(x9) ∧ breach(e10,x12,x9)))))) ∧

∃x7(choose8(x7,September,Mrs. Yeargin,e4,e3,e2,e1,y,x) ∧

is_alternative_of(v,x7)) ∧ jail(z) ∧

90(u) ∧ days(u) ∧ location(u) ⊑ in(z) ∧

∃x7(choose12(x7,September,Mrs. Yeargin,e5,e4,e3,e2,e1,v,
u,z,y,x) ∧ is_story_of(x3,x7)) ∧

personal(x1) ∧ downfall(x1) ∧

is_one_of(x2,x1) ∧

fired(e1,_,Mrs. Yeargin) ∧

prosecuted(e2,_,Mrs. Yeargin) ∧ under(e2) = x ∧

∃x7(choose4(x7,Mrs. Yeargin,e2,e1,x) ∧

fine(y) ∧ 500(y) ∧ unit(y) ∧

∃x8(guilty(x8) ∧

pleaded(e3,x7,x8) ∧ time(e3) ⊑ in(September)) ∧

paid(e4,x7,y) ∧ time(e4) ⊑ in(September)) ∧

was(e5,v,u) ∧ is(e6,x3,x2) ∧ partly(e6) ∧

∃x7(choose16(x7,September,Mrs. Yeargin,e6,e5,e4,e3,
e2,e1,x3,x2,x1,v,u,z,y,x) ∧

∃e8e9(e8 < e0 ∧ e9 < e0 ∧

unstinting(x6) ∧ teacher(x6) ∧

laurels(x4) ∧ students(x5) ∧

won(e8,x6,x4) ∧ inspired(e9,x6,x5)) ∧

was(e7,x7,x6)) ∧

∃x7(choose20(x7,e7,x6,x5,x4,September,Mrs. Yeargin,
e6,e5,e4,e3,e2,e1,x3,x2,x1,v,u,z,y,x) ∧

will(probably(never(∃e8(teach(e8,x7) ∧ again(e8)))))))))

Banking Meaning Representations from Treebanks / 15

The automatic encoding of pronouns found in (39) introduces an
existentially bound variable and an n + 1-place “choosen” predicate,
as in (40), such that to resolve the pronoun the existentially bound x

might be equated to one of the variables y1,...,yn that form the range
of accessible antecedents calculated at the stage of evaluation.

(40) ∃x(choosen(x,y1,...,yn) ∧ ...)

To give an idea of more general properties of the banks of semantic
representations we have generated we can, for example, measure the
frequency of aspects of the representations.

Meaning representations generated with the WSJ data contain 49004
distinct predicates with event arguments, 15131 of these appear more
than once, 4234 appear more than twice, and 1939 appear five times or
more. The frequency distribution for predicates with event arguments
is given in table 2.

predicate frequency number of predicates
1000 ≤ f < 6200 6
100 ≤ f < 1000 89
10 ≤ f < 100 1839
5 ≤ f < 10 2295
2 ≤ f < 5 10897
0 < f ≤ 1 33878

Table 2: Frequency distribution of predicates with event arguments using

WSJ data

Table 3 details the 20 predicates with the highest frequency together
with arguments.

frequency predicate and arguments (event argument suppressed)
6114 said (arg0 entity) (that proposition)
2593 is (arg1 entity) (arg0 entity)
2034 says (arg0 entity) (that proposition)
1395 are (arg1 entity) (arg0 entity)
1353 was (arg1 entity) (arg0 entity)
1088 be (arg1 entity) (arg0 entity)
779 have (arg1 entity) (arg0 entity)
643 say (arg0 entity) (that proposition)
590 has (arg1 entity) (arg0 entity)
581 were (arg1 entity) (arg0 entity)
499 is (arg0 entity) (that proposition)
414 had (arg1 entity) (arg0 entity)
392 expected (arg0 entity) (that proposition)
376 include (arg1 entity) (arg0 entity)
325 have (arg0 entity) (that proposition)
299 think (arg0 entity) (that proposition)
259 make (arg1 entity) (arg0 entity)
257 said (arg0 entity) (location (in entity)) (that proposition)
253 expects (arg0 entity) (that proposition)
252 want (arg0 entity) (that proposition)

Table 3: Top 20 highest frequency predicates with event arguments using

WSJ data

16 / LiLT volume 7, issue 6 January 2012

Tables 4 and 5 detail results for predicates with event arguments in
the meaning representations generated using the PennBioIE data.

predicate frequency number of predicates
100 ≤ f < 250 8
10 ≤ f < 100 226
5 ≤ f < 10 337
2 ≤ f < 5 1616
0 < f ≤ 1 3374

Table 4: Frequency distribution of predicates with event arguments using

PennBioIE data

frequency predicate and arguments (event argument suppressed)
231 using (arg1 entity) (arg0 entity)
230 was (arg1 entity) (arg0 entity)
215 is (arg1 entity) (arg0 entity)
190 are (arg1 entity) (arg0 entity)
166 were (arg1 entity) (arg0 entity)
151 had (arg1 entity) (arg0 entity)
138 suggest (arg0 entity) (that proposition)
123 inhibited (arg1 entity) (arg0 entity)
96 involved (in entity) (arg1 entity)
92 inhibited (arg0 entity) (arg1 entity)
88 showed (arg1 entity) (arg0 entity)
87 associated (with entity) (arg1 entity)
75 found (location (in entity)) (arg1 entity)
74 indicate (arg0 entity) (that proposition)
68 be (arg1 entity) (arg0 entity)
67 inhibit (arg1 entity) (arg0 entity)
65 have (arg1 entity) (arg0 entity)
53 found (that proposition)
51 detected (location (in entity)) (arg1 entity)
49 suggesting (arg0 entity) (that proposition)

Table 5: Top 20 highest frequency predicates with event arguments using

PennBioIE data

We can also use the generated meaning representations to count dif-
fering scope structures. With the meaning representations generated
from the WSJ data we identified 7234 scope structures. Of these 3860
appear more than once, and 2244 appear five times or more. The fre-
quency distribution for scope structures is shown in table 6.

structure frequency number of structures

10000 ≤ f < 18000 2
1000 ≤ f < 10000 1
100 ≤ f < 1000 23
10 ≤ f < 100 190
5 ≤ f < 10 201
2 ≤ f < 5 871
0 < f ≤ 1 5946

Table 6: Frequency distribution of scope structures with WSJ data

Banking Meaning Representations from Treebanks / 17

Table 7 presents the top 20 highest frequency scope structures with
the WSJ data, with ‘<’ used to indicate ‘scopes over’. By far the most
frequent is an essentially flat scope structure with the meaning repre-
sentation being build from only existential quantification and conjunc-
tion. The WSJ data does however contain a considerable number of
embedding taking predicates, e.g., said, expected, think, seen already
with table 3 and grouped together in table 7 as THAT. Possible cases
of scope ambiguity with quantifiers arise considerably lower on the fre-
quency scale, and indeed we have to develop a more crafted extraction
of scope structure to explore this with any reliability.

frequency scope structure
17717
10489 THAT
1140 ¬

648 THAT < ¬

619 ∀

508 ∨

434 THAT < ?
399 ABOUT
287 ?
285 ¬ < THAT
243 THAT < ∀

237 THAT < ¬

229 THAT < ABOUT
198 THAT < ∨

193 can
192 MORE_THAN
185 may
175 ∀ < THAT
173 could
124 ? < THAT

Table 7: Top 20 highest frequency scope structures with WSJ data

Results for scope structures using the PennBioIE data are presented
in tables 8 and 9.

structure frequency number of structures
1000 ≤ f < 3900 1
100 ≤ f < 1000 3
10 ≤ f < 100 24
5 ≤ f < 10 21
2 ≤ f < 5 81
0 < f ≤ 1 535

Table 8: Frequency distribution of scope structures with PennBioIE data

18 / LiLT volume 7, issue 6 January 2012

frequency quantificational structure
3816
581 THAT
264 ¬

198 ∨

99 ∀

73 may
56 THAT < may
44 ¬ ∨

44 THAT < ?
34 THAT < ¬

33 can
28 EACH
27 could
22 ABOUT
21 ¬ < ANY
21 THAT < can
20 ?
15 THAT < ∨

14 ¬ < ¬

14 ∨ < ¬

Table 9: Top 20 highest frequency scope structures with PennBioIE data

We can also provide statistics for the SCT expressions used as the
basis for the evaluations that generate meaning representations. In
this regard a notable property is the presence of grammatical bind-
ing names which productively arise with the conversion of functional
tag and preposition information.

With the SCT expressions converted from the WSJ corpus there
is the creation of 728 binding names. Of these 319 only appear once,
and 534 appear less than five times. Figure 1 illustrates the growth of
binding names with the WSJ data. The numbers seem to have con-
verged for names that appear at least twice or more while new binding
names that appear only once keep appearing. Some binding names
that appear only once are due to noise from the treebank annotation
or conversion process, but the overwhelming majority are linguisti-
cally significant, e.g., tmp_starting_with, prp_primarily_because_of,
loc_well_below, dir_out_from_under, instead_of_through, follow-

ing_on, conditioned_on, based_loc_on, as_compared_with, account-

ing_for.

With the SCT expressions converted from the PennBioIE corpus
there is the creation of 225 binding names. Of these 73 only appear
once, and 153 appear less than five times. Figure 2 illustrates the name
growth, with an essentially identical pattern emerging to figure 1.

Banking Meaning Representations from Treebanks / 19

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 200000 400000 600000 800000 1e+06 1.2e+06

N
um

be
r

of
 b

in
di

ng
 n

am
es

Word tokens

All
f > 1
f > 2
f > 5

Figure 1: Growth of binding names using WSJ data

 0

 50

 100

 150

 200

 250

 0 20000 40000 60000 80000 100000 120000 140000 160000

N
um

be
r

of
 b

in
di

ng
 n

am
es

Word tokens

All
f > 1
f > 2
f > 5

Figure 2: Growth of binding names using PennBioIE data

7 Related Work

As first steps for getting to meaning representations there are meth-
ods for taking the Penn Treebank and extracting Lexicalized Tree-
Adjoining Grammars, (Xia et al. 2000) Combinatory Categorial Gram-
mars (CCG) (Hockenmaier 2003) and Head-driven Phrase Structure

20 / LiLT volume 7, issue 6 January 2012

Grammars (HPSG) (Miyao and Tsujii 2008). Extracted grammars have
led to the development of parsers that allow assembling meaning repre-
sentations during parse time: Curran et al. (2007) and Basile and Bos
(2011) employ a parser derived from an extracted CCG grammar to
build semantic representations in the framework of Discourse Represen-
tation Theory, while Sato et al. (2006) build semantic representations
of Typed Dynamic Logic with an HPSG based parser.

Considering partial semantic representations, Cahill et al. (2002)
present an algorithm to annotate the Penn Treebank with Lexical Func-
tional Grammar F-structures, and Spreyer and Frank (2005) apply
to the TIGER Dependency Bank for German a method for obtain-
ing banks of underspecified meaning representations from dependency
structures. Also of relevance is the Redwoods approach to treebanking
(Oepen et al. 2002) in which analyses are recorded as defined by the
LinGO English Resource Grammar, which includes generating under-
specified meaning representations.

However the current authors are unaware of gold standard fully spec-
ified meaning representations for any sizeable amount of data, and
worse still of established methods by which meaning representations
might be adequately compared and evaluated, although Bos (2008)
contains suggestions. It is hoped that the current work in allowing the
building of large banks of meaning representations can contribute to-
wards the establishment of some benchmarks in this area.

8 Summary

To sum up we have demonstrated a method for building banks of mean-
ing representations from treebanks. Since the system is able to work di-
rectly with gold standard treebanks it is able to inherit the advantage of
a syntactic base that is known to be essentially correct, an unavoidable
requirement for building meaning representations of any suitability. The
system has allowed the construction of a number of banks of meaning
representations from existing treebanks with both high coverage and
quality of representation in preserving and making fully explicit de-
pendencies through generating scoped operations of quantification and
their bindings.

Acknowledgments

This research has been supported by the JST PRESTO program (Syn-
thesis of Knowledge for Information Oriented Society).

References / 21

References

Basile, Valerio and Johan Bos. 2011. Towards generating text from discourse
representation structures. In Proceedings of the 13th European Workshop
on Natural Language Generation (ENLG), pages 145–150. Nancy, France.

Bies, Ann, Mark Ferguson, Karen Katz, and Robert MacIntyre. 1995. Brack-
eting guidelines for Treebank II style Penn Treebank project. Tech. Rep.
MS-CIS-95-06, LINC LAB 281, University of Pennsylvania Computer and
Information Science Department.

Bos, Johan. 2008. Let’s not argue about semantics. In Proceedings of the 6th
Language Resources and Evaluation Conference (LREC 2008). Marrakech,
Morocco.

Butler, Alastair. 2010. The Semantics of Grammatical Dependencies, vol. 23
of Current Research in the Semantics/Pragmatics Interface. Bingley:
Emerald.

Cahill, Aoife, Mairéad McCarthy, Josef van Genabith, and Andy Way. 2002.
Automatic annotation of the Penn Treebank with LFG F-structure infor-
mation. In LREC 2002 Workshop on Linguistic Knowledge Acquisition
and Representation—Bootstrapping Annotated Language Data, Las Pal-
mas, Spain, pages 8–15.

Curran, James R., Stephen Clark, and Johan Bos. 2007. Linguistically mo-
tivated large-scale NLP with C&C and Boxer. In Proceedings of the ACL
2007 Demonstrations Session (ACL-07 demo), pages 33–36.

Davidson, Donald. 1967. The logical form of action sentences. In N. Rescher,
ed., The Logic of Decision and Action. Pittsburgh: University of Pitts-
burgh Press. Reprinted in: D. Davidson, 1980. Essays on Actions and
Events. Claredon Press, Oxford, pages 105–122.

Hockenmaier, Julia. 2003. Data and models for statistical parsing with Com-
binatory Categorial Grammar . Ph.D. thesis, School of Informatics, Uni-
versity of Edinburgh.

Kulick, Seth, Ann Bies, Mark Liberman, Mark Mandel, Ryan McDonald,
Martha Palmer, Andrew Schein, and Lyle Ungar. 2004. Integrated anno-
tation for biomedical information extraction. In Proc. of HLT/NAACL
2004 , pages 61–68. Association for Computational Linguistics.

Landman, Fred. 2000. Events and Plurality: The Jerusalem Lectures. Dor-
drecht: Kluwer Academic Publishers.

Lease, Matthew and Eugene Charniak. 2005. Parsing biomedical literature.
In Second International Joint Conference on Natural Language Processing
(IJCNLP’05). Springer-Verlag.

Marcus, Michell, Beatrice Santorini, and Mary Ann Marcinkiewicz. 1993.
Building a large annotated corpus of English: The Penn Treebank. Com-
putational Linguistics 19(2):313–330.

Mitchell P. Marcus, Mary Ann Marcinkiewicz, Beatrice Santorini and Ann
Taylor. 1999. Treebank-3. Linguistic Data Consortium, Philadelphia.

22 / LiLT volume 7, issue 6 January 2012

Miyao, Yusuke and Jun’ichi Tsujii. 2008. Feature forest models for proba-
bilistic HPSG parsing. Computational Linguistics 34(1):35–80.

Oepen, Stephan, E. Callahan, Dan Flickinger, and Christoper D. Manning.
2002. LinGO Redwoods. A rich and dynamic treebank for HPSG. In
LREC workshop on parser evaluation. Las Palmas, Spain.

Santorini, Beatrice. 1990. Part-of-speech tagging guidelines for the Penn
Treebank Project (3rd revision). Tech. Rep. Tech Report MS-CIS-90-47,
Linc Lab 178, Department of Computer and Information Science, Univer-
sity of Pennsylvania, Philadelphia.

Sato, Manabu, Daisuke Bekki, Yusuke Miyao, and Jun’ichi Tsujii. 2006.
Translating HPSG-style outputs of a robust parser into Typed Dynamic
Logic. In ACL 2006, 21st International Conference on Computational Lin-
guistics and 44th Annual Meeting of the Association for Computational
Linguistics, Proceedings of the Conference. Sydney, Australia.

Spreyer, Kathrin and Anette Frank. 2005. The TIGER 700 RMRS Bank:
RMRS Construction from Dependencies. In Proceedings of the 6th Inter-
national Workshop on Linguistically Interpreted Corpora, pages 1–10. Jeju
Island, Korea.

Vermeulen, C. F. M. 2000. Variables as stacks: A case study in dynamic
model theory. Journal of Logic, Language and Information 9:143–167.

Xia, Fei, Martha Palmer, and Aravind Joshi. 2000. A uniform method of
grammar extraction and its applications. In In Proceedings of the 2000
Conference on Empirical Methods in Natural Language Processing , pages
53–62. Hong Kong.

