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Abstract

Treebanks are a linguistic resource: a large database where the mor-
phological, syntactic and lexical information for each sentence has been
explicitly marked. The critical requirements of treebanks for various
NLP activities (research and application) are well known. This also
implies that treebanks need to be as error free as possible. However,
manual validation of a treebank is very costly, both in terms of time
and money. This paper describes an approach to automatically detect
errors in a treebank after a complete manual annotation. Over and
above improving an earlier error detection tool (Ambati et al. (2011))
for a Hindi treebank. We also present a user study to show that our
system reduces the validation time signi�cantly while detecting 81.49%
of the errors at the dependency level.
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1 Introduction

Treebanks have proved to be a crucial resource for NLP research and
developing solutions for various NLP related applications. A treebank
should be error free considering its role in providing appropriate lin-
guistic knowledge. However, manual detection of errors is a very costly
task, both in terms of time and money. Thus, automatic error detection
tools are required to reduce the time of validation. The tools could be
rule based or statistical or combination of the two. Hence, tools with
high recall value and signi�cant precision are highly favored for this
task. The time for validation can be further trimmed down using GUIs
which can supplement validators as explained by Ambati et al. (2011).

The process of developing a treebank involves manual or semi-
automatic annotations of linguistic information. A semi-automatic pro-
cedure involves annotating the grammatical information using tools.
Output of these tools is then manually checked and corrected. Both
these procedures may leave errors in the treebank on the �rst attempt.
Therefore, there is usually another step of identifying and manually
correcting these errors.

In this work, we improve over the mechanism proposed by Ambati
et al. (2011) to detect dependency annotation errors. The data used
for the experiments is a part of the larger Hindi dependency treebank
(Bhatt et al. (2009); Xia et al. (2009)). We used this data to show the
performance of our system. We integrate our system with Sanchay1.

For more details on the type of errors which we extract from the
Hindi dependency treebank, please refer to our previous work (Ambati
et al. (2011)).

The paper is arranged as follows. In section 2, we summarize some
of the previous work done on detecting errors in a treebank. In sec-
tion 3, we brie�y describe our approach. Experiments and results are
given in section 4. In section 5, we present a user study, performed to
check whether our system is able to reduce the overall validation time.
In section 6, we describe a few system improvements that reduce the
validation time. Section 7 contains a general discussion and concludes
our paper.

2 Related Work

Error detection in a treebank has gained interest for researchers over
the last decade due to an increase in the demand for a high quality
annotated corpora.

1http://www.sanchay.co.in
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Dickinson and Meurers (2003a,b) developed a treebank error de-
tection approach based on the concept of 'ngram variation detection'.
In 'ngram variation detection', they try to �nd strings, which occur
multiple times in the corpus, but have varying syntactic annotations.
This can be because the strings are ambiguous and can have di�erent
structures, depending on the meaning, or because the annotation is
erroneous in at least one of the cases. The idea was then adapted for
dependency structures (Dickinson and Meurers (2005)) as well, by an-
alyzing the possible dependency relations between same words. Again
di�erent dependency relations can be either the result of ambiguity or
errors.

Some other earlier methods for error detection in syntactic annota-
tion (mainly POS and chunking), are developed by Eskin (2000) and
Halteren (2000). Volokh and Neumann (2011) employ a method similar
to Halteren (2000), to automatically correct errors at the dependency
level. Their main idea is to reproduce the gold standard data using
MSTParser, MALTParser and MDParser2. They use the outputs of
any two parsers to detect error nodes, and mark a node as an error if
the tag assigned by the two parsers di�ers from the one in the gold data.
In case the assigned tags are di�erent, they use the output of the third
parser to check if the tag assigned by the third parser matches with
any of the tags assigned by the other two parsers. If the tag matches
with any of the other two tags, changes are made in the gold data.

Based on large corpora, van Noord (2004) and De kok et al. (2009)
employed error mining techniques. Other examples of detection of an-
notation errors in Treebanks include Kaljurand (2004) and Kordoni
(2003). Most of the aforementioned techniques work well with a large
corpora in which the frequency of occurrence of words is very high. None
of them work in data sparse conditions except De kok et al. (2009).
Moreover, the techniques employed by van Noord (2004), De kok et al.
(2009) and Volokh and Neumann (2011) rely on the output of a reliable
state-of-the-art parser which may not be available for many languages
such as Hindi, the language in our work. Thus, detecting errors in small
treebanks is still a challenging task.

Only work by Ambati et al. (2011) and Ambati et al. (2010) tries
to detect errors in a Hindi dependency treebank. They used a com-
bination of a rule-based system and a hybrid system to detect the
errors. We call this overall hybrid system. A rule-based system con-
tributes towards increasing the precision of the system; it uses robust
rules formed using annotation guidelines and the framework, whereas

2http://mdparser.sb.dfki.de/
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a hybrid system is the combination of a statistical module with rule-
based post-processing. The statistical module detects potential errors
from the treebank and the rule-based post-processing module prunes
the false positives3, with the help of robust and e�cient rules to in-
crease the precision of the overall system. A rule-based system is not
the same as a 'rule-based post-processing' module as explained in Am-
bati et al. (2011). Ambati et al. (2011) is di�erent from the Ambati et al.
(2010) in that Ambati et al. (2011) uses PBSM (Probability-based Sta-
tistical Module) as a statistical module whereas Ambati et al. (2010)
uses FBSM (Frequency-based Statistical Module). Ambati et al. (2011)
demonstrate that PBSM outperforms FBSM when tested on the same
data. Predicting a correct dependency label depends largely on contex-
tual information like information from its parent, sibling, children and
grandparent. Current state-of-the-art parsers (MSTParser4 and MALT-
Parser5) use these kinds of features for dependency labeling. Thus, a
major limitation of the FBSM is that it can not use more contextual
information due to the sparsity issue.

Also there are some limitations of the PBSM. Such as:

. They use smaller feature set and is not e�ective enough to detect
signi�cant amount of the errors in the treebank.

. They use dependency labels as a feature from a current node's con-
text while predicting an appropriate dependency label for the current
node. The predicted dependency label might be erroneous because
it is being extracted from the same annotated treebank. Then using
the same dependency labels as a feature might mislead PBSM into
predicting a wrong label for the current node.

3 Our Approach

The PBSM proposed by Ambati et al. (2011), extracts some contextual
features, trains using gold standard training data that is validated by
linguistic experts, creates a model using maximum entropy classi�ca-
tion algorithm6 (MAXENT), tests the system on the testing data and
obtains the probabilities for all the possible dependency tags. It then
feeds the 1st best and 2nd best tag probabilities into its algorithm to
detect errors. For more details of the algorithm please refer to Figure 2
of Ambati et al. (2011). The �gure shows the pseudo code of the algo-
rithm. Using this algorithm Ambati et al. (2011) could not only detect

3False positives occur when a node that is not an error is detected as an error.
4http://sourceforge.net/projects/mstparser/
5http://maltparser.org/
6http://maxent.sourceforge.net/
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FIGURE 1 Improved version of the overall system proposed by Ambati
et al. (2010)

the errors but also classify them into di�erent categories. We use the
same algorithm to detect errors with di�erent parameter values.

The kind of features used in a statistical system are very important.
Thus, one should carefully choose features which help statistical sys-
tems to learn e�ectively. Ambati et al. (2011) uses parent (POS and
CHUNK tag), sibling and child (POS, CHUNK and dependency la-
bel) features apart from the node's feature (POS, CHUNK). In this
paper, we improve over the PBSM approach proposed by Ambati et al.
(2011). We extend the PBSM by adding more linguistically motivated
features like dependency labels of the parent, grandparent and count of
its children. We call our statistical approach an Extended PBSM

(EPBSM). We compare the performance of the EPBSM with the
PBSM. We also improve the hybrid system by placing a new module
'Rule-based correction' before the statistical module as shown in Fig-
ure 1. The rule-based correction module is described in detail in Section
3.1 below. We use the EPBSM as the statistical module in the over-
all hybrid system to compare the performance of the resultant system
with the overall hybrid system employed by Ambati et al. (2011). We
also show an e�ect of increasing the training data size on our system.
Finally, we perform some user studies which con�rm that our system
e�ectively reduces the overall validation time.

3.1 Rule-based Correction

The main aim of this module is to detect inter-related errors at the time
of validation. Inter-related errors occur when the dependency label of a
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node, say 'nodeA', is related to the dependency label of another node,
say 'nodeB', in the context of 'nodeA', and the error in the dependency
label of 'nodeB' might a�ect the prediction of the dependency label of
'nodeA' by the statistical module.

The feature set of our statistical module contains dependency labels
from the context of 'nodeA' as one of its features and is crucial in
detecting errors. So it is better to ensure that the dependency labels
are correct while extracting them from the context of 'nodeA'. Hence,
we correct them if they follow the rules used for this module. One
example of such a case is given below:
Example1: In a possible scenario, the dependency label of a node,

say 'node1', is 'r6'7 and the dependency label of its parent node, say
'node2', is something other than 'POF'8. We can say that the 'node1'
is not an error as it follows the rule that says, that, "if a current node
has a dependency label 'r6' and the dependency label of its parent is
'POF' then the dependency label for the current node is wrong, the
label should be either 'r6-k1' or 'r6-k2' and vice-versa" 9. But what
if the dependency label of the 'node2' is wrong? This, in turn, would
a�ect the dependency label of 'node1'. If we can somehow detect that
the dependency label of 'node2' is 'POF', then according to the rule
mentioned above, the dependency label of 'node1' can not be 'r6', it
should be either 'r6-k1' or 'r6-k2'. This implies that 'node1' is an error.
It is unlikely that the statistical module will detect the error present in
'node1' because of the incorrect contextual information of 'node2'.

To resolve this problem we introduce module in which we place
rules like rule the following: "If the dependency label of the current
node'node1' is marked as 'k2' and root of its parent node'node2' is
'kara'(do) then the dependency label of the current node must be
changed to 'POF'." In this module, while extracting the dependency
label of 'node2' as a feature of 'node1', we check if a rule can be ap-
plied at 'node2'. If any of the rules are applicable, as in this example,
we mark 'node2' as an error. Instead of 'k2', we then use 'POF' as the
dependency label of 'node2' as a feature for 'node1'. Since we have now
corrected the feature structure of 'node1', the statistical system might
detect the error in 'node1'. Note that we do not make changes in the
dependency label of the parent in the data, we use a modi�ed label in
the feature set of the current node. This module is used before the sta-
tistical system to correct the extracted feature set of the current node
and to identify additional errors. The additional accounted under the

7The genitive/possessive relation which holds between two nouns.
8Part of relation such as conjunct verbs.
9from the Hindi dependency guidelines (Bharati et al. (2009))
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Approach
Total Error System Correct

Recall
Instances Output Errors

PBSM of
843(7113) 2000 481 57.06%

Ambati et al. (2011)
EPBSM: Our Approach +

843(7113) 2143 619 73.42%
rule-based correction

TABLE 1 Comparison of performance of statistical model at dependency
level

rule-based approach but not under the EPBSM. So error in 'node2' is
calculated under the performance of the rule-based approach.

4 Experiment and Results

Like Ambati et al. (2011) we use a 65k token manually annotated and
validated sample of data (2694 sentences) derived from the Hindi de-
pendency treebank for evaluation. The data is divided into 40k, 10k and
15k for training, development and testing respectively. We use this data
to compare our system with Ambati et al. (2011). Later we also train
our system with a larger amount of cross-veri�ed10 data to show its
e�ect on our system's overall performance. We used the training data
to train a model and the development data to tune the parameters like
threshold values. For our experiments, thres_max= 0.8, thres_min =
0.4, thres_minX = 0.4 and thres_dif = 0.2 gave the best performance.

Table 1 shows the performance of the EPBSM approach with the
rule-based correction module and compares it with the performance of
the PBSM. The PBSM could detect 57.06% of the dependency error.
But using the EPBSM, with an improved feature set, we could detect
63.72 % of the dependency errors. After adding the rule-based correc-
tion module in front of the EPBSM the recall of the system increased
by 9.68% to 73.4% with a reasonable precision value of 26.45%. Adding
more rules to the rule-based correction module can further increase the
recall of the EPBSM. There is an overall improvement of 16.34% in
the recall value of our approach over the PBSM. Note that the 73.4%
of the errors detected by the EPBSM does not contain the additional
errors marked by the rule-based correction module. Those errors are
accounted for by the performance of rule-based system as in the ex-
ample1; The additional error in the parent node is accounted under
performance of the rule-based system.

Table 2 compares the accuracies obtained by the overall hybrid sys-
tem employed by Ambati et al. (2011) and their system after replacing

10Annotators correcting each other's data but the data is not corrected by experts
of the language.
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Approach
Total Error System Correct

Recall
Instances Output Errors

Ambati et al. (2011) overall system
843(7113) 2165 646 76.63%

with their PBSM
Overall Hybrid system with

843(7113) 2187 663 78.64%
our EPBSM + Rule-Based correction

TABLE 2 Comparison of performance of overall hybrid system at
dependency level

Approach
Total Error System Correct

Recall
Instances Output Errors

Our EPBSM 843 2143 619 73.42%
Our EPBSM

843 2217 652 77.34%
(increased training data)
Our overall Hybrid System 843 2187 663 78.64%
Our overall Hybrid System

843 2252 687 81.49%
(increased training data)

TABLE 3 Performance of our systems after increasing the training data
size, our overall hybrid system uses the EPBSM and rule-based correction

module

it with our rule-based correction module and the EPBSM approach.
Recall of the overall system increased by 2% from the recall obtained
by Ambati et al. (2011).

In the overall hybrid system, the rule-based system and the hybrid
system detected a total of 170 and 619 error instances respectively. Out
of these, 126 error instances are common to both the rule-based system
and the PBSM module. This is the reason for small increase of only 2%
in the recall of the overall system. But this also implies that learning
of the statistical module has improved a great deal due to the addition
of new features and the rule-based correction module. Note that our
main aim is to achieve a high recall value with a signi�cant precision
as false positives can easily be discarded by the validators.

Table 3 compares the performance of our EPBSM and the overall
hybrid system obtained before and after increasing the size of the train-
ing data. The size of new training data used is around 290k words. We
can see that there is a signi�cant rise of 3.92% and 2.85% in the recall
of both the EPBSM and the overall hybrid system respectively.

5 User Studies

As we discussed earlier manual validation of a treebank takes a lot of
time. So it is important to reduce the validation time by suggesting a
smaller set of potential error nodes to the annotators. This way they
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just need to check the set of suggested potential error nodes for errors.
We performed a user study, in which, annotators were �rst given 280

sentences containing a total of 2647 nodes from the treebank for manual
validation. They were asked to note the time taken to validate each
�le. Annotators took a total of 30 hours to validate all the sentences
i.e.they validated on average 88 nodes in an hour. Then we computed
the potential errors using our overall hybrid system on the same set of
annotated �les given to the annotators. 1128 potential errors nodes were
detected by our system containing 81% of the correct error nodes. These
potential error nodes were then given again to the same annotators for
the manual validation. They were again asked to note the validation
time. To validate these potential error nodes, annotators took a total
time of 16 hours, i.e. 71 they validated nodes per hour. This is more
time taken than the previous 88 nodes per hour because this time the
annotators looked at each and every node very carefully as all the nodes
were potential error nodes. Although annotators took more time to
validate a single node this time, they did not have to go through all
the 2647 nodes but only 1128 nodes. We cut down by nearly half the
validation time and at the same time corrected 81% of the errors in the
treebank.

6 A few system improvements to reduce the validation

time

Apart from detecting errors automatically, there are a few system im-
provements that can be used to save additional validation time. We
analyzed the whole process which annotators use to detect errors in a
treebank. We found that,

. Some of their time is spent in searching for a speci�c node id in a
treebank,

. It also takes time to con�rm whether a node is an error as annotators
have to look into the whole context of a node.

So we developed a system in which we took care of the issues men-
tioned above and integrated it with Sanchay. We provide annotators
with an error �le11 that the annotators open using Sanchay. When an

11It contains the list potential error nodes with di�erent information like the
node's Id, contextual information, and the 1st best and 2nd best dependency labels
predicted by a statistical module. We also include a comment where we mention if a
potential error node is detected using the rule based system or the hybrid system. In
case of a rule-based system, we mention the rule behind this; in case of a statistical
system, we categorize them into one of the three error categories mentioned in the
algorithm.
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annotator clicks on the potential error node shown to him/her, the sen-
tence containing that potential error node gets automatically displayed
in Sanchay and the node gets highlighted. This way he/she does not
have to search for the node manually. We also provide su�cient infor-
mation (parent's and sibling's dependency labels and POS tags) in the
error �le which often is enough to decide if the node is an actual error
node or not. So for that node, the annotators need not have to go to
the sentence at all. These improvements help the annotators and saved
a lot of time.

7 Conclusion

In this work, we have improved the system proposed by Ambati et al.
(2011) and reduced the overall manual validation time. Our EPBSM
with the rule-based correction module detected 73.42% of the total er-
rors which is 16.34% more than that of PBSM of Ambati et al. (2011).
There is also an increase of 2% in the performance of the overall hybrid
system over Ambati et al. (2011) to 78.64%. The increase in the perfor-
mance of the overall hybrid system is relatively less than the increase
in the performance of the EPBSM. This is mainly because there is an
overlap between the errors predicted in both the rule-based system and
the statistical system. But the important thing is that we have suc-
cessfully improved the performance of the statistical system using an
improved feature set and the rule based correction module. The com-
bined framework can now easily be adopted for any treebank by using
similar rules for that language. We have also proposed a system through
which these detected errors can easily be corrected in less time.

We can not expect the experts to manually correct a large amount
of data as their time is valuable. Thus, we experimented with 290k
cross-veri�ed data to increase the size of the training data. We have
successfully shown that increasing the training data size also enhances
the performance of our system to a high 81.49% although the training
data is only cross-veri�ed. So we do not require experts to correct the
training data if we can have a large amount of cross-veri�ed data. Apart
from detecting a signi�cant number of errors, our approach reduces the
overall validation time and streamlines the overall validation process.
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